
Manuel K Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4235511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental risk assessment of ivermectin: A case study. Integrated Environmental Assessment and Management, 2010, 6, 567-587.	2.9	113
2	Gains to species diversity in organically farmed fields are not propagated at the farm level. Nature Communications, 2014, 5, 4151.	12.8	89
3	Ten years of free-air CO2 enrichment altered the mobilization of N from soil in Lolium perenne L. swards. Global Change Biology, 2004, 10, 1377-1388.	9.5	83
4	Cation Binding of Antimicrobial Sulfathiazole to Leonardite Humic Acid. Environmental Science & Technology, 2009, 43, 6632-6638.	10.0	73
5	Predicting critical source areas for diffuse herbicide losses to surface waters: Role of connectivity and boundary conditions. Journal of Hydrology, 2009, 365, 23-36.	5.4	56
6	Quantification of neighbourhood-dependent plant growth by Bayesian hierarchical modelling. Journal of Ecology, 2006, 94, 310-321.	4.0	46
7	Responses of plants, earthworms, spiders and bees to geographic location, agricultural management and surrounding landscape in European arable fields. Agriculture, Ecosystems and Environment, 2014, 186, 124-134.	5.3	44
8	Towards a hydrological classification of European soils: preliminary test of its predictive power for the base flow index using river discharge data. Hydrology and Earth System Sciences, 2007, 11, 1501-1513.	4.9	43
9	Spatial monitoring of grassland management using multi-temporal satellite imagery. Ecological Indicators, 2020, 113, 106201.	6.3	39
10	Analysis of the dissipation kinetics of ivermectin at different temperatures and in four different soils. Chemosphere, 2009, 75, 1097-1104.	8.2	37
11	Shifting Impacts of Climate Change. Advances in Ecological Research, 2016, 55, 437-473.	2.7	36
12	Assessment of spatial variability of multiple ecosystem services in grasslands of different intensities. Journal of Environmental Management, 2019, 251, 109372.	7.8	35
13	Responses of net ecosystem CO2 exchange in managed grassland to long-term CO2 enrichment, N fertilization and plant species. Plant, Cell and Environment, 2005, 28, 823-833.	5.7	34
14	Choosy grazers: Influence of plant traits on forage selection by three cattle breeds. Functional Ecology, 2020, 34, 980-992.	3.6	33
15	Plant species loss due to forest succession in Alpine pastures depends on site conditions and observation scale. Biological Conservation, 2013, 161, 213-222.	4.1	32
16	Patterns of livestock activity on heterogeneous subalpine pastures reveal distinct responses to spatial autocorrelation, environment and management. Movement Ecology, 2015, 3, 35.	2.8	32
17	Inferring Behavioral States of Grazing Livestock from High-Frequency Position Data Alone. PLoS ONE, 2014, 9, e114522.	2.5	30
18	Grazing Allometry: Anatomy, Movement, and Foraging Behavior of Three Cattle Breeds of Different Productivity. Frontiers in Veterinary Science, 2020, 7, 494.	2.2	27

#	Article	IF	CITATIONS
19	Influence of Highland and production-oriented cattle breeds on pasture vegetation: A pairwise assessment across broad environmental gradients. Agriculture, Ecosystems and Environment, 2019, 284, 106585.	5.3	26
20	Spatial and Temporal Patterns of Pharmaceuticals in the Aquatic Environment: A Review. Geography Compass, 2008, 2, 920-955.	2.7	23
21	Using discharge data to reduce structural deficits in a hydrological model with a Bayesian inference approach and the implications for the prediction of critical source areas. Water Resources Research, 2011, 47, .	4.2	22
22	An increase in food production in Europe could dramatically affect farmland biodiversity. Communications Earth & Environment, 2021, 2, .	6.8	22
23	Selecting Scenarios to Assess Exposure of Surface Waters to Veterinary Medicines in Europe. Environmental Science & Technology, 2007, 41, 4669-4676.	10.0	21
24	EDITOR'S CHOICE: How much would it cost to monitor farmland biodiversity in Europe?. Journal of Applied Ecology, 2016, 53, 140-149.	4.0	21
25	Does no-tillage decrease nitrate leaching compared to ploughing under a long-term crop rotation in Switzerland?. Soil and Tillage Research, 2020, 199, 104590.	5.6	18
26	Estimating Catchment Vulnerability to Diffuse Herbicide Losses from Hydrograph Statistics. Journal of Environmental Quality, 2010, 39, 1441-1450.	2.0	17
27	Dominant shrub species are a strong predictor of plant species diversity along subalpine pasture-shrub transects. Alpine Botany, 2020, 130, 141-156.	2.4	16
28	Farmland biodiversity and agricultural management on 237 farms in 13 European and two African regions. Ecology, 2016, 97, 1625-1625.	3.2	15
29	An overlooked carbon source for grassland soils: loss of structural carbon from stubble in response to elevated pCO 2 and nitrogen supply. New Phytologist, 2006, 172, 117-126.	7.3	14
30	Phosphorus redistribution by dairy cattle on a heterogeneous subalpine pasture, quantified using GPS tracking. Agriculture, Ecosystems and Environment, 2018, 257, 183-192.	5.3	13
31	Above- and belowground patterns in a subalpine grassland-shrub mosaic. Plant Biosystems, 2017, 151, 493-503.	1.6	11
32	Appropriate metrics to inform farmers about species diversity. Environmental Science and Policy, 2014, 41, 52-62.	4.9	10
33	Strikingly high effect of geographic location on fauna and flora of European agricultural grasslands. Basic and Applied Ecology, 2015, 16, 281-290.	2.7	9
34	Individualism in plant populations: Using stochastic differential equations to model individual neighbourhood-dependent plant growth. Theoretical Population Biology, 2008, 74, 74-83.	1.1	8
35	Thinning the thickets: Foraging of hardy cattle, sheep and goats in green alder shrubs. Journal of Applied Ecology, 2022, 59, 1394-1405.	4.0	8
36	Spatial Distribution of Highland Cattle in Alnus viridis Encroached Subalpine Pastures. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	6

#	Article	IF	CITATIONS
37	Natural estrogens in surface waters of a catchment with intensive livestock farming in Switzerland. Environmental Sciences: Processes and Impacts, 2020, 22, 2244-2255.	3.5	6