
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4234908/publications.pdf Version: 2024-02-01

LENODE FAHDIC

#	Article	IF	CITATIONS
1	Resolving the <scp>SLOSS</scp> dilemma for biodiversity conservation: a research agenda. Biological Reviews, 2022, 97, 99-114.	10.4	48
2	Reduced predation on roadside nests can compensate for road mortality in roadâ€adjacent turtle populations. Ecosphere, 2022, 13, .	2.2	4
3	The effects of humanâ€altered habitat spatial pattern on frugivory and seed dispersal: a global metaâ€analysis. Oikos, 2022, 2022, .	2.7	9
4	The disproportionately high value of small patches for biodiversity conservation. Conservation Letters, 2022, 15, .	5.7	52
5	Management diversity begets biodiversity in production forest landscapes. Biological Conservation, 2022, 268, 109514.	4.1	10
6	The Importance of Small Rainforest Patches for Biodiversity Conservation: A Multi-taxonomic Assessment. Topics in Biodiversity and Conservation, 2022, , 41-60.	1.0	3
7	Reconceptualizing conservation. , 2022, 1, e0000016.		7
8	Bird Diversity Unconsciously Increases People's Satisfaction with Where They Live. Land, 2021, 10, 153.	2.9	9
9	What the habitat amount hypothesis does and does not predict: A reply to Saura. Journal of Biogeography, 2021, 48, 1530-1535.	3.0	13
10	Preserving 40% forest cover is a valuable and wellâ€supported conservation guideline: reply to Banksâ€Leite <i>et al</i> . Ecology Letters, 2021, 24, 1114-1116.	6.4	7
11	Weak Effects of Owned Outdoor Cat Density on Urban Bird Richness and Abundance. Land, 2021, 10, 507.	2.9	5
12	Bridging research and practice in conservation. Conservation Biology, 2021, 35, 1725-1737.	4.7	32
13	Mapping the premigration distribution of eastern Monarch butterflies using community science data. Ecology and Evolution, 2021, 11, 11275-11281.	1.9	4
14	How the relationship between vegetation cover and land-cover variance constrains biodiversity in a human dominated world. Landscape Ecology, 2021, 36, 3097-3104.	4.2	10
15	Reduced human activity during COVID-19 alters avian land use across North America. Science Advances, 2021, 7, eabf5073.	10.3	36
16	More milkweed in farmlands containing small, annual crop fields and many hedgerows. Agriculture, Ecosystems and Environment, 2021, 319, 107567.	5.3	0
17	Avoiding wasted research resources in conservation science. Conservation Science and Practice, 2021, 3, e329.	2.0	28
18	The influence of landscape context on short―and longâ€ŧerm forest change following a severe ice storm. Journal of Ecology, 2020, 108, 224-238.	4.0	4

#	Article	IF	CITATIONS
19	Effects of farmland heterogeneity on biodiversity are similar to—or even larger than—the effects of farming practices. Agriculture, Ecosystems and Environment, 2020, 288, 106698.	5.3	72
20	Are macroinvertebrate traits reliable indicators of specific agrichemicals?. Ecological Indicators, 2020, 111, 105965.	6.3	8
21	Inference in road ecology research: what we know versus what we think we know. Biology Letters, 2020, 16, 20200140.	2.3	22
22	Designing optimal humanâ€modified landscapes for forest biodiversity conservation. Ecology Letters, 2020, 23, 1404-1420.	6.4	279
23	Configurational crop heterogeneity increases withinâ€field plant diversity. Journal of Applied Ecology, 2020, 57, 654-663.	4.0	47
24	Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecology Letters, 2020, 23, 674-681.	6.4	139
25	Why do several small patches hold more species than few large patches?. Global Ecology and Biogeography, 2020, 29, 615-628.	5.8	136
26	How to rescue Ontario's <i>Endangered Species Act</i> : a biologist's perspective. Facets, 2020, 5, 423-431.	2.4	8
27	Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16442-16447.	7.1	312
28	Bats respond negatively to increases in the amount and homogenization of agricultural land cover. Landscape Ecology, 2019, 34, 1889-1903.	4.2	23
29	The homogenizing influence of agriculture on forest bird communities at landscape scales. Landscape Ecology, 2019, 34, 2385-2399.	4.2	28
30	Abundance of aerially-dispersing spiders declines with increasing road traffic. Ecoscience, 2019, 26, 383-388.	1.4	4
31	Local habitat association does not inform landscape management of threatened birds. Landscape Ecology, 2019, 34, 1313-1327.	4.2	11
32	A global assessment of primate responses to landscape structure. Biological Reviews, 2019, 94, 1605-1618.	10.4	57
33	Wetland buffers are no substitute for landscapeâ€scale conservation. Ecosphere, 2019, 10, e02661.	2.2	5
34	A small-scale response of urban bat activity to tree cover. Urban Ecosystems, 2019, 22, 795-805.	2.4	6
35	The scale of effect of landscape context varies with the species' response variable measured. Landscape Ecology, 2019, 34, 703-715.	4.2	48
36	Life in the slow drain: Landscape structure affects farm ditch water quality. Science of the Total Environment, 2019, 656, 1157-1167.	8.0	11

#	Article	IF	CITATIONS
37	Is habitat fragmentation bad for biodiversity?. Biological Conservation, 2019, 230, 179-186.	4.1	329
38	Habitat fragmentation: A long and tangled tale. Clobal Ecology and Biogeography, 2019, 28, 33-41.	5.8	112
39	Landscape context is more important than wetland buffers for farmland amphibians. Agriculture, Ecosystems and Environment, 2019, 269, 97-106.	5.3	24
40	New policy directions for global pond conservation. Conservation Letters, 2018, 11, e12447.	5.7	104
41	When to monitor and when to act: Value of information theory for multiple management units and limited budgets. Journal of Applied Ecology, 2018, 55, 2102-2113.	4.0	48
42	Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172242.	2.6	153
43	Farmland heterogeneity benefits bats in agricultural landscapes. Agriculture, Ecosystems and Environment, 2018, 253, 131-139.	5.3	58
44	Flying insect abundance declines with increasing road traffic. Insect Conservation and Diversity, 2018, 11, 608-613.	3.0	26
45	Environmental challenges for the Belt and Road Initiative. Nature Sustainability, 2018, 1, 206-209.	23.7	305
46	Higher bat and prey abundance at organic than conventional soybean fields. Biological Conservation, 2018, 226, 177-185.	4.1	15
47	Habitat specialist birds disperse farther and are more migratory than habitat generalist birds. Ecology, 2018, 99, 2058-2066.	3.2	32
48	When roadâ€kill hotspots do not indicate the best sites for roadâ€kill mitigation. Journal of Applied Ecology, 2017, 54, 1544-1551.	4.0	84
49	Relative effects of landscape composition and configuration on multi-habitat gamma diversity in agricultural landscapes. Agriculture, Ecosystems and Environment, 2017, 241, 62-69.	5.3	49
50	Responses of anurans to composition and configuration of agricultural landscapes. Agriculture, Ecosystems and Environment, 2017, 239, 399-409.	5.3	53
51	Testing the habitat amount hypothesis for South American small mammals. Biological Conservation, 2017, 209, 304-314.	4.1	86
52	Ecological Responses to Habitat Fragmentation Per Se. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 1-23.	8.3	690
53	How to quantify a distanceâ€dependent landscape effect on a biological response. Methods in Ecology and Evolution, 2017, 8, 1717-1724.	5.2	41
54	An experimental test of the habitatâ€amount hypothesis for saproxylic beetles in a forested region. Ecology, 2017, 98, 1613-1622.	3.2	75

#	Article	IF	CITATIONS
55	The spatial scale of timeâ€lagged population synchrony increases with species dispersal distance. Global Ecology and Biogeography, 2017, 26, 1201-1210.	5.8	10
56	Influence of crop type, heterogeneity and woody structure on avian biodiversity in agricultural landscapes. Ecological Indicators, 2017, 83, 218-226.	6.3	57
57	Does forest fragmentation cause an increase in forest temperature?. Ecological Research, 2017, 32, 81-88.	1.5	87
58	Homogenization of dispersal ability across bird species in response to landscape change. Oikos, 2017, 126, 996-1003.	2.7	12
59	Forty years of bias in habitat fragmentation research. , 2017, , .		6
60	Reconciling contradictory relationships between mobility and extinction risk in humanâ€altered landscapes. Functional Ecology, 2016, 30, 1558-1567.	3.6	16
61	Different Anuran Species Show Different Relationships to Agricultural Intensity. Wetlands, 2016, 36, 731-744.	1.5	21
62	Can anthropogenic linear gaps increase plant abundance and diversity?. Landscape Ecology, 2016, 31, 721-729.	4.2	34
63	What determines the spatial extent of landscape effects on species?. Landscape Ecology, 2016, 31, 1177-1194.	4.2	194
64	Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landscape Ecology, 2016, 31, 951-968.	4.2	97
65	How Effective Is Road Mitigation at Reducing Road-Kill? A Meta-Analysis. PLoS ONE, 2016, 11, e0166941.	2.5	189
66	Just a hypothesis: a reply to Hanski. Journal of Biogeography, 2015, 42, 993-994.	3.0	32
67	Matrix quality and disturbance frequency drive evolution of species behavior at habitat boundaries. Ecology and Evolution, 2015, 5, 5792-5800.	1.9	10
68	Experimental study designs to improve the evaluation of road mitigation measures for wildlife. Journal of Environmental Management, 2015, 154, 48-64.	7.8	58
69	Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biological Conservation, 2015, 184, 117-126.	4.1	160
70	Influence of traffic mortality on forest bird abundance. Biodiversity and Conservation, 2015, 24, 1507-1529.	2.6	19
71	Disentangling the effects of wetland cover and urban development on quality of remaining wetlands. Urban Ecosystems, 2015, 18, 663-684.	2.4	16
72	Positive effects of roads on small mammals: a test of the predation release hypothesis. Ecological Research, 2015, 30, 651-662.	1.5	19

#	Article	IF	CITATIONS
73	Relative effects of landscapeâ€scale wetland amount and landscape matrix quality on wetland vertebrates: a metaâ€analysis. Ecological Applications, 2015, 25, 812-825.	3.8	41
74	Are ecologists conducting research at the optimal scale?. Global Ecology and Biogeography, 2015, 24, 52-63.	5.8	430
75	A simple landscape design framework for biodiversity conservation. Landscape and Urban Planning, 2015, 136, 13-27.	7.5	41
76	Farmlands with smaller crop fields have higher within-field biodiversity. Agriculture, Ecosystems and Environment, 2015, 200, 219-234.	5.3	275
77	Reconsidering the role of â€~semiâ€natural habitat' in agricultural landscape biodiversity: a case study. Ecological Research, 2015, 30, 75-83.	1.5	67
78	Low Reproductive Rate Predicts Species Sensitivity to Habitat Loss: A Meta-Analysis of Wetland Vertebrates. PLoS ONE, 2014, 9, e90926.	2.5	32
79	Do Roads Reduce Painted Turtle (Chrysemys picta) Populations?. PLoS ONE, 2014, 9, e98414.	2.5	19
80	Culverts alone do not reduce road mortality in anurans. Ecoscience, 2014, 21, 69-78.	1.4	22
81	Higher nestling food biomass in organic than conventional soybean fields in eastern Ontario, Canada. Agriculture, Ecosystems and Environment, 2014, 189, 199-205.	5.3	6
82	A speciesâ€centered approach for uncovering generalities in organism responses to habitat loss and fragmentation. Ecography, 2014, 37, 517-527.	4.5	114
83	Landscape context affects genetic diversity at a much larger spatial extent than population abundance. Ecology, 2014, 95, 871-881.	3.2	67
84	Predicting species diversity in agricultural environments using Landsat TM imagery. Remote Sensing of Environment, 2014, 144, 214-225.	11.0	45
85	Why is a landscape perspective important in studies of primates?. American Journal of Primatology, 2014, 76, 901-909.	1.7	77
86	Does traffic noise alter calling time in frogs and toads? A case study of anurans in Eastern Ontario, Canada. Urban Ecosystems, 2014, 17, 945-953.	2.4	30
87	Similar effects of residential and non-residential vegetation on bird diversity in suburban neighbourhoods. Urban Ecosystems, 2014, 17, 27-44.	2.4	23
88	Habitat Loss and Fragmentation. , 2013, , 50-58.		19
89	Why are some animal populations unaffected or positively affected by roads?. Oecologia, 2013, 173, 1143-1156.	2.0	67
90	Road kill hotspots do not effectively indicate mitigation locations when past road kill has depressed populations. Journal of Wildlife Management, 2013, 77, 1353-1359.	1.8	39

#	Article	IF	CITATIONS
91	Evaluating the effectiveness of road mitigation measures. Biodiversity and Conservation, 2013, 22, 425-448.	2.6	140
92	From forest and agroâ€ecosystems to the microecosystems of the human body: what can landscape ecology tell us about tumor growth, metastasis, and treatment options?. Evolutionary Applications, 2013, 6, 82-91.	3.1	19
93	Optimizing landscape selection for estimating relative effects of landscape variables on ecological responses. Landscape Ecology, 2013, 28, 371-383.	4.2	98
94	On the hope for biodiversity-friendly tropical landscapes. Trends in Ecology and Evolution, 2013, 28, 462-468.	8.7	328
95	Effects of habitat loss, habitat configuration and matrix composition on declining wetland species. Biological Conservation, 2013, 160, 200-208.	4.1	101
96	Mate attraction by male anurans in the presence of traffic noise. Animal Conservation, 2013, 16, 275-285.	2.9	23
97	Rethinking patch size and isolation effects: the habitat amount hypothesis. Journal of Biogeography, 2013, 40, 1649-1663.	3.0	920
98	Assessing Habitat Fragmentation Effects on Primates: The Importance of Evaluating Questions at the Correct Scale. , 2013, , 13-28.		85
99	Birds in cultural landscapes: actual and perceived differences between northeastern North America and western Europe. , 2012, , 481-515.		10
100	Effect of paved road density on abundance of white-tailed deer. Wildlife Research, 2012, 39, 478.	1.4	18
101	Measuring and selecting scales of effect for landscape predictors in species–habitat models. Ecological Applications, 2012, 22, 2277-2292.	3.8	96
102	Landscape moderation of biodiversity patterns and processes ―eight hypotheses. Biological Reviews, 2012, 87, 661-685.	10.4	1,443
103	Foraging habitat and diet of Song Sparrows (<i>Melospiza melodia</i>) nesting in farmland: a stable isotope approach. Canadian Journal of Zoology, 2012, 90, 1339-1350.	1.0	15
104	Measures to reduce population fragmentation by roads: what has worked and how do we know?. Trends in Ecology and Evolution, 2012, 27, 374-380.	8.7	148
105	Measuring Protectedâ€Area Isolation and Correlations of Isolation with Landâ€Use Intensity and Protection Status. Conservation Biology, 2012, 26, 610-618.	4.7	48
106	Do species life history traits explain population responses to roads? A meta-analysis. Biological Conservation, 2012, 147, 87-98.	4.1	219
107	Relative effects of vehicle pollution, moisture and colonization sources on urban lichens. Journal of Applied Ecology, 2012, 49, 1467-1474.	4.0	16
108	What size is a biologically relevant landscape?. Landscape Ecology, 2012, 27, 929-941.	4.2	294

#	Article	lF	CITATIONS
109	Effects of landscape structure on butterfly species richness and abundance in agricultural landscapes in eastern Ontario, Canada. Agriculture, Ecosystems and Environment, 2012, 156, 123-133.	5.3	68
110	A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3292-3302.	4.0	244
111	Reproductive rate and body size predict road impacts on mammal abundance. , 2011, 21, 589-600.		64
112	Sub-optimal study design has major impacts on landscape-scale inference. Biological Conservation, 2011, 144, 298-305.	4.1	101
113	Relative effects of road mortality and decreased connectivity on population genetic diversity. Biological Conservation, 2011, 144, 3143-3148.	4.1	169
114	Carbon and nitrogen stable isotope ratios differ among invertebrates from field crops, forage crops, and non-cropped land uses. Ecoscience, 2011, 18, 98-109.	1.4	22
115	Do birds and beetles show similar responses to urbanization?. , 2011, 21, 2297-2312.		72
116	Movement of small mammals across divided highways with vegetated medians. Canadian Journal of Zoology, 2011, 89, 1214-1222.	1.0	13
117	Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 2011, 14, 101-112.	6.4	1,279
118	Are the negative effects of roads on breeding birds caused by traffic noise?. Journal of Applied Ecology, 2011, 48, 1527-1534.	4.0	134
119	Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography, 2011, 34, 103-113.	4.5	173
120	Predicting spatial occurrence of beetles and pseudoscorpions in hollow oaks in southeastern Sweden. Biodiversity and Conservation, 2011, 20, 2027-2040.	2.6	34
121	Positive effects of forest fragmentation, independent of forest amount, on bat abundance in eastern Ontario, Canada. Landscape Ecology, 2011, 26, 865-876.	4.2	130
122	Effects of time since urbanization on anuran community composition in remnant urban ponds. Environmental Conservation, 2010, 37, 128-135.	1.3	31
123	Detecting human-driven deviations from trajectories in landscape composition and configuration. Landscape Ecology, 2010, 25, 1479-1487.	4.2	37
124	The trade-off between housing density and sprawl area: Minimising impacts to forest breeding birds. Basic and Applied Ecology, 2010, 11, 723-733.	2.7	44
125	A comparison of patch connectivity measures using data on invertebrates in hollow oaks. Ecography, 2010, 33, 971-978.	4.5	38
126	The Trade-off Between Housing Density and Sprawl Area: Minimizing Impacts to Carabid Beetles (Coleoptera: Carabidae). Ecology and Society, 2010, 15, .	2.3	19

#	Article	IF	CITATIONS
127	Plasticity in the vocalizations of anurans in response to traffic noise. Acta Oecologica, 2010, 36, 463-470.	1.1	101
128	Behavioral Responses of Northern Leopard Frogs (Rana pipiens) to Roads and Traffic: Implications for Population Persistence. Ecology and Society, 2009, 14, .	2.3	57
129	Quantifying the Road-Effect Zone: Threshold Effects of a Motorway on Anuran Populations in Ontario, Canada. Ecology and Society, 2009, 14, .	2.3	123
130	Effects of Roads on Animal Abundance: an Empirical Review and Synthesis. Ecology and Society, 2009, 14, .	2.3	840
131	Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecology, 2009, 24, 1271-1285.	4.2	260
132	How far do songbirds disperse?. Ecography, 2009, 32, 1051-1061.	4.5	53
133	A checklist for ecological management of landscapes for conservation. Ecology Letters, 2008, 11, 78-91.	6.4	518
134	Do small mammals avoid roads because of the traffic?. Journal of Applied Ecology, 2008, 45, 117-123.	4.0	166
135	Accessible habitat: an improved measure of the effects of habitat loss and roads on wildlife populations. Landscape Ecology, 2008, 23, 159-168.	4.2	107
136	Testing Holling's texturalâ€discontinuity hypothesis. Journal of Biogeography, 2008, 35, 2149-2150.	3.0	5
137	The relative effects of road traffic and forest cover on anuran populations. Biological Conservation, 2008, 141, 35-46.	4.1	143
138	Edge effects created by wildfire and clear-cutting on boreal forest ground-dwelling spiders. Forest Ecology and Management, 2008, 255, 1434-1445.	3.2	42
139	Movement Patterns of Eastern Chipmunks (<i>Tamias striatus</i>) Near Roads. Journal of Mammalogy, 2008, 89, 895-903.	1.3	60
140	The Rauischholzhausen Agenda for Road Ecology. Ecology and Society, 2007, 12, .	2.3	119
141	Nonâ€optimal animal movement in humanâ€altered landscapes. Functional Ecology, 2007, 21, 1003-1015.	3.6	485
142	Modeling density dependence and climatic disturbances in caribou: a case study from the Bathurst Island complex, Canadian High Arctic. Journal of Zoology, 2007, 272, 209-217.	1.7	16
143	Potential net effects of climate change on High Arctic Peary caribou: Lessons from a spatially explicit simulation model. Ecological Modelling, 2007, 207, 85-98.	2.5	36
144	Diet and body size of North American mammal road mortalities. Transportation Research, Part D: Transport and Environment, 2007, 12, 498-505.	6.8	53

#	Article	IF	CITATIONS
145	Effect of landscape context on anuran communities in breeding ponds in the National Capital Region, Canada. Landscape Ecology, 2007, 22, 205-215.	4.2	105
146	Effects of surrounding urbanization on non-native flora in small forest patches. Landscape Ecology, 2007, 22, 589-599.	4.2	79
147	Effect of road density on abundance of white-footed mice. Landscape Ecology, 2007, 22, 1501-1512.	4.2	69
148	RESPONSE OF PREDATORS TO LOSS AND FRAGMENTATION OF PREY HABITAT: A REVIEW OF THEORY. Ecology, 2006, 87, 1086-1093.	3.2	166
149	Landscape connectivity: a return to the basics. , 2006, , 29-43.		203
150	EVIDENCE OF LARGE-SCALE SOURCE–SINK DYNAMICS AND LONG-DISTANCE DISPERSAL AMONG WOOD THRUSH POPULATIONS. Ecology, 2006, 87, 3029-3036.	3.2	63
151	Targets for maintenance of dead wood for biodiversity conservation based on extinction thresholds. Scandinavian Journal of Forest Research, 2006, 21, 201-208.	1.4	66
152	Body size affects the spatial scale of habitat-beetle interactions. Oikos, 2005, 110, 101-108.	2.7	84
153	Habitat loss decreases predator-prey ratios in a pine-bark beetle system. Oikos, 2005, 110, 265-270.	2.7	49
154	Predicting when animal populations are at risk from roads: an interactive model of road avoidance behavior. Ecological Modelling, 2005, 185, 329-348.	2.5	313
155	Fecundity determines the extinction threshold in a Canadian assemblage of longhorned beetles (Coleoptera: Cerambycidae). Journal of Insect Conservation, 2005, 9, 109-119.	1.4	22
156	Mechanisms Affecting Population Density in Fragmented Habitat. Ecology and Society, 2005, 10, .	2.3	52
157	When is a landscape perspective important?. , 2005, , 3-10.		46
158	Population Ecology in Spatially Heterogeneous Environments. , 2005, , 95-118.		45
159	Short-term response of ground beetles (Coleoptera: Carabidae) to fire and logging in a spruce-dominated boreal landscape. Forest Ecology and Management, 2005, 212, 118-126.	3.2	78
160	Effects of a recent wildfire and clearcuts on ground-dwelling boreal forest spider assemblages. Canadian Journal of Forest Research, 2005, 35, 2575-2588.	1.7	40
161	MATRIX STRUCTURE OBSCURES THE RELATIONSHIP BETWEEN INTERPATCH MOVEMENT AND PATCH SIZE AND ISOLATION. Ecology, 2005, 86, 1023-1033.	3.2	182
162	Response of Forest Understory Vegetation to a Major Ice Storm. Journal of the Torrey Botanical Society, 2004, 131, 45.	0.3	20

#	Article	IF	CITATIONS
163	Crown Loss and Subsequent Branch Sprouting of Forest Trees in Response to a Major Ice Storm. Journal of the Torrey Botanical Society, 2004, 131, 169.	0.3	21
164	Effects of Road Fencing on Population Persistence. Conservation Biology, 2004, 18, 1651-1657.	4.7	165
165	A transient, positive effect of habitat fragmentation on insect population densities. Oecologia, 2004, 141, 444-451.	2.0	70
166	Determining the Spatial Scale of Species' Response to Habitat. BioScience, 2004, 54, 227.	4.9	326
167	Influence of canopy cover and amount of open habitat in the surrounding landscape on proportion of alien plant species in forest sites. Ecoscience, 2004, 11, 278-281.	1.4	30
168	Evaluation of patch isolation metrics in mosaic landscapes for specialist vs. generalist dispersers. Landscape Ecology, 2003, 18, 41-50.	4.2	131
169	Using patch isolation metrics to predict animal movement in binary landscapes. Landscape Ecology, 2003, 18, 17-39.	4.2	196
170	EFFECT OF REPRODUCTIVE RATE ON MINIMUM HABITAT REQUIREMENTS OF FOREST-BREEDING BIRDS. Ecology, 2003, 84, 2643-2653.	3.2	61
171	Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 487-515.	8.3	5,326
172	Effect of Habitat Fragmentation on the Extinction Threshold: A Synthesis. , 2002, 12, 346.		28
173	Focal patch landscape studies for wildlife management: Optimizing sampling effort across scales. , 2002, , 68-91.		74
174	EFFECT OF HABITAT FRAGMENTATION ON THE EXTINCTION THRESHOLD: A SYNTHESIS*. , 2002, 12, 346-353.		144
175	DISPERSAL DISTANCE OF MAMMALS IS PROPORTIONAL TO HOME RANGE SIZE. Ecology, 2002, 83, 2049-2055.	3.2	295
176	Effect of landscape structure on the movement behaviour of a specialized goldenrod beetle, Trirhabda borealis. Canadian Journal of Zoology, 2002, 80, 24-35.	1.0	85
177	Gap crossing by chipmunks: an experimental test of landscape connectivity. Canadian Journal of Zoology, 2002, 80, 1556-1561.	1.0	46
178	How does landscape structure influence landscape connectivity?. Oikos, 2002, 99, 552-570.	2.7	180
179	Importance of patch scale vs landscape scale on selected forest birds. Oikos, 2002, 96, 110-118.	2.7	88

180 Impacts of Landscape Transformation by Roads. , 2002, , 225-243.

27

#	Article	IF	CITATIONS
181	Patch Size and Population Density: the Effect of Immigration Behavior. Ecology and Society, 2002, 6, .	0.9	110
182	How much habitat is enough?. Biological Conservation, 2001, 100, 65-74.	4.1	795
183	Effect of Road Traffic on Two Amphibian Species of Differing Vagility. Conservation Biology, 2001, 15, 1071-1078.	4.7	280
184	On the use of connectivity measures in spatial ecology. A reply. Oikos, 2001, 95, 152-155.	2.7	67
185	Landscape structure influences continental distribution of hantavirus in deer mice. Landscape Ecology, 2001, 16, 255-266.	4.2	101
186	On the usage and measurement of landscape connectivity. Oikos, 2000, 90, 7-19.	2.7	883
187	Effect of woody borders on insect density and diversity in crop fields: a landscape-scale analysis. Agriculture, Ecosystems and Environment, 2000, 78, 115-122.	5.3	116
188	How should we measure landscape connectivity?. Landscape Ecology, 2000, 15, 633-641.	4.2	284
189	LANDSCAPE COMPLEMENTATION AND METAPOPULATION EFFECTS ON LEOPARD FROG POPULATIONS. Ecology, 2000, 81, 2498-2508.	3.2	278
190	LANDSCAPE COMPLEMENTATION AND METAPOPULATION EFFECTS ON LEOPARD FROG POPULATIONS. , 2000, 81, 2498.		2
191	Landscape Complementation and Metapopulation Effects on Leopard Frog Populations. Ecology, 2000, 81, 2498.	3.2	4
192	Testing for Habitat Detection Distances Using Orientation Data. Oikos, 1999, 84, 160.	2.7	23
193	Predicting Invasiveness of Plant Species Based on Biological Information. Conservation Biology, 1999, 13, 422-426.	4.7	313
194	Traditional farmers' knowledge of sorghum (sorghum bicolor [Poaceae]) landrace storability in Ethiopia. Economic Botany, 1999, 53, 69-78.	1.7	42
195	Maintenance of sorghum (sorghum bicolor, poaceae) landrace diversity by farmers' selection in Ethiopia. Economic Botany, 1999, 53, 79-88.	1.7	74
196	Effects of Vegetation Type and Adjacent Agricultural Matrix on Fencerow Use by Small Mammals: A Nonmanipulative Experiment. , 1999, , 249-260.		3
197	INDEPENDENT EFFECTS OF FOREST COVER AND FRAGMENTATION ON THE DISTRIBUTION OF FOREST BREEDING BIRDS. , 1999, 9, 586-593.		356
198	Effect of Habitat Patch Characteristics on Abundance and Diversity of Insects in an Agricultural Landscape. Ecosystems, 1998, 1, 197-205.	3.4	78

#	Article	IF	CITATIONS
199	When does fragmentation of breeding habitat affect population survival?. Ecological Modelling, 1998, 105, 273-292.	2.5	288

Relative effects of trap versus trawl fisheries on population dynamics of the northern cod (Gadus) Tj ETQq0 0 0 rgBT $_{1.4}^{10}$ Overlock 10 Tf 50

201	HABITAT LOSS AND POPULATION DECLINE: A META-ANALYSIS OF THE PATCH SIZE EFFECT. Ecology, 1998, 79, 517-533.	3.2	657
202	Metapopulations and Wildlife Conservation. Journal of Wildlife Management, 1998, 62, 426.	1.8	3
203	Intra-Specific Abundance-Distribution Relationships. Oikos, 1998, 82, 483.	2.7	29
204	Local vs. Landscape Effects of Woody Field Borders as Barriers to Crop Pest Movement. Ecology and Society, 1998, 2, .	0.9	17
205	Raccoon Habitat Use at 2 Spatial Scales. Journal of Wildlife Management, 1997, 61, 102.	1.8	119
206	Relative Effects of Habitat Loss and Fragmentation on Population Extinction. Journal of Wildlife Management, 1997, 61, 603.	1.8	749
207	Response of generalist and specialist insect herbivores to landscape spatial structure. Landscape Ecology, 1997, 12, 185-197.	4.2	179
208	Title is missing!. Euphytica, 1997, 97, 255-263.	1.2	121
209	Habitat Availability Causes the Species Abundance-Distribution Relationship. Oikos, 1996, 76, 564.	2.7	98
209 210	Habitat Availability Causes the Species Abundance-Distribution Relationship. Oikos, 1996, 76, 564. Effect of road traffic on amphibian density. Biological Conservation, 1995, 73, 177-182.	2.7 4.1	98 470
210	Effect of road traffic on amphibian density. Biological Conservation, 1995, 73, 177-182.		470
210 211	Effect of road traffic on amphibian density. Biological Conservation, 1995, 73, 177-182. Landscape pattern and population conservation. , 1995, , 293-308. The advantage of long-distance clonal spreading in highly disturbed habitats. Evolutionary Ecology,	4.1	470 55
210 211 212	Effect of road traffic on amphibian density. Biological Conservation, 1995, 73, 177-182. Landscape pattern and population conservation. , 1995, , 293-308. The advantage of long-distance clonal spreading in highly disturbed habitats. Evolutionary Ecology, 1994, 8, 172-187.	4.1	470 55 105
210 211 212 213	Effect of road traffic on amphibian density. Biological Conservation, 1995, 73, 177-182. Landscape pattern and population conservation. , 1995, , 293-308. The advantage of long-distance clonal spreading in highly disturbed habitats. Evolutionary Ecology, 1994, 8, 172-187. Conservation of Fragmented Populations. Conservation Biology, 1994, 8, 50-59.	4.1 1.2 4.7	470 55 105 834

#	Article	IF	CITATIONS
217	Relative importance of spatial and temporal scales in a patchy environment. Theoretical Population Biology, 1992, 41, 300-314.	1.1	161
218	Simulation Methods for Developing General Landscape-Level Hypotheses of Single-Species Dynamics. Ecological Studies, 1991, , 417-442.	1.2	33
219	A general model of populations in patchy habitats. Applied Mathematics and Computation, 1988, 27, 53-66.	2.2	43
220	Determinants of local population size in patchy habitats. Theoretical Population Biology, 1988, 34, 194-213.	1.1	119
221	Effect of Spatial Arrangement of Habitat Patches on Local Population Size. Ecology, 1988, 69, 468-475.	3.2	154
222	Nature of ecological theories. Ecological Modelling, 1988, 43, 129-132.	2.5	8
223	Interpatch dispersal of the cabbage butterfly. Canadian Journal of Zoology, 1987, 65, 616-622.	1.0	42
224	On Succession in A Saxicolous Lichen Community. Lichenologist, 1985, 17, 167-172.	0.8	35
225	Spatial characteristics of habitat patches and population survival. Ecological Modelling, 1985, 30, 297-308.	2.5	88
226	Habitat Patch Connectivity and Population Survival. Ecology, 1985, 66, 1762-1768.	3.2	626
227	Population Stability in a Patchy Environment. Developments in Environmental Modelling, 1983, 5, 61-67.	0.3	8
228	Landscape heterogeneity and metapopulation dynamics. , 0, , 78-91.		24