Lenore Fahrig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4234908/publications.pdf

Version: 2024-02-01

233

all docs

3714 5558 35,820 228 82 citations h-index papers

233

g-index 233 22042 docs citations times ranked citing authors

179

#	Article	lF	CITATIONS
1	Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 487-515.	3.8	5,326
2	Connectivity Is a Vital Element of Landscape Structure. Oikos, 1993, 68, 571.	1.2	1,688
3	Landscape moderation of biodiversity patterns and processes ―eight hypotheses. Biological Reviews, 2012, 87, 661-685.	4.7	1,443
4	Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 2011, 14, 101-112.	3.0	1,279
5	Rethinking patch size and isolation effects: the habitat amount hypothesis. Journal of Biogeography, 2013, 40, 1649-1663.	1.4	920
6	On the usage and measurement of landscape connectivity. Oikos, 2000, 90, 7-19.	1.2	883
7	Effects of Roads on Animal Abundance: an Empirical Review and Synthesis. Ecology and Society, 2009, 14, .	1.0	840
8	Conservation of Fragmented Populations. Conservation Biology, 1994, 8, 50-59.	2.4	834
9	How much habitat is enough?. Biological Conservation, 2001, 100, 65-74.	1.9	795
10	Relative Effects of Habitat Loss and Fragmentation on Population Extinction. Journal of Wildlife Management, 1997, 61, 603.	0.7	749
11	Ecological Responses to Habitat Fragmentation Per Se. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 1-23.	3.8	690
12	HABITAT LOSS AND POPULATION DECLINE: A META-ANALYSIS OF THE PATCH SIZE EFFECT. Ecology, 1998, 79, 517-533.	1.5	657
13	Habitat Patch Connectivity and Population Survival. Ecology, 1985, 66, 1762-1768.	1.5	626
14	A checklist for ecological management of landscapes for conservation. Ecology Letters, 2008, 11, 78-91.	3.0	518
15	Nonâ€optimal animal movement in humanâ€altered landscapes. Functional Ecology, 2007, 21, 1003-1015.	1.7	485
16	Effect of road traffic on amphibian density. Biological Conservation, 1995, 73, 177-182.	1.9	470
17	Are ecologists conducting research at the optimal scale?. Global Ecology and Biogeography, 2015, 24, 52-63.	2.7	430
18	INDEPENDENT EFFECTS OF FOREST COVER AND FRAGMENTATION ON THE DISTRIBUTION OF FOREST BREEDING BIRDS. , $1999, 9, 586-593$.		356

#	Article	IF	CITATIONS
19	Is habitat fragmentation bad for biodiversity?. Biological Conservation, 2019, 230, 179-186.	1.9	329
20	On the hope for biodiversity-friendly tropical landscapes. Trends in Ecology and Evolution, 2013, 28, 462-468.	4.2	328
21	Determining the Spatial Scale of Species' Response to Habitat. BioScience, 2004, 54, 227.	2.2	326
22	Predicting Invasiveness of Plant Species Based on Biological Information. Conservation Biology, 1999, 13, 422-426.	2.4	313
23	Predicting when animal populations are at risk from roads: an interactive model of road avoidance behavior. Ecological Modelling, 2005, 185, 329-348.	1.2	313
24	Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16442-16447.	3.3	312
25	Environmental challenges for the Belt and Road Initiative. Nature Sustainability, 2018, 1, 206-209.	11.5	305
26	DISPERSAL DISTANCE OF MAMMALS IS PROPORTIONAL TO HOME RANGE SIZE. Ecology, 2002, 83, 2049-2055.	1.5	295
27	What size is a biologically relevant landscape?. Landscape Ecology, 2012, 27, 929-941.	1.9	294
28	When does fragmentation of breeding habitat affect population survival?. Ecological Modelling, 1998, 105, 273-292.	1.2	288
29	How should we measure landscape connectivity?. Landscape Ecology, 2000, 15, 633-641.	1.9	284
30	Effect of Road Traffic on Two Amphibian Species of Differing Vagility. Conservation Biology, 2001, 15, 1071-1078.	2.4	280
31	Designing optimal humanâ€modified landscapes for forest biodiversity conservation. Ecology Letters, 2020, 23, 1404-1420.	3.0	279
32	LANDSCAPE COMPLEMENTATION AND METAPOPULATION EFFECTS ON LEOPARD FROG POPULATIONS. Ecology, 2000, 81, 2498-2508.	1.5	278
33	Farmlands with smaller crop fields have higher within-field biodiversity. Agriculture, Ecosystems and Environment, 2015, 200, 219-234.	2.5	275
34	Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecology, 2009, 24, 1271-1285.	1.9	260
35	A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3292-3302.	1.8	244
36	Do species life history traits explain population responses to roads? A meta-analysis. Biological Conservation, 2012, 147, 87-98.	1.9	219

#	Article	IF	CITATIONS
37	Landscape connectivity: a return to the basics. , 2006, , 29-43.		203
38	Using patch isolation metrics to predict animal movement in binary landscapes. Landscape Ecology, 2003, 18, 17-39.	1.9	196
39	What determines the spatial extent of landscape effects on species?. Landscape Ecology, 2016, 31, 1177-1194.	1.9	194
40	How Effective Is Road Mitigation at Reducing Road-Kill? A Meta-Analysis. PLoS ONE, 2016, 11, e0166941.	1.1	189
41	MATRIX STRUCTURE OBSCURES THE RELATIONSHIP BETWEEN INTERPATCH MOVEMENT AND PATCH SIZE AND ISOLATION. Ecology, 2005, 86, 1023-1033.	1.5	182
42	How does landscape structure influence landscape connectivity?. Oikos, 2002, 99, 552-570.	1.2	180
43	Response of generalist and specialist insect herbivores to landscape spatial structure. Landscape Ecology, 1997, 12, 185-197.	1.9	179
44	Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography, 2011, 34, 103-113.	2.1	173
45	Relative effects of road mortality and decreased connectivity on population genetic diversity. Biological Conservation, 2011, 144, 3143-3148.	1.9	169
46	RESPONSE OF PREDATORS TO LOSS AND FRAGMENTATION OF PREY HABITAT: A REVIEW OF THEORY. Ecology, 2006, 87, 1086-1093.	1.5	166
47	Do small mammals avoid roads because of the traffic?. Journal of Applied Ecology, 2008, 45, 117-123.	1.9	166
48	Effects of Road Fencing on Population Persistence. Conservation Biology, 2004, 18, 1651-1657.	2.4	165
49	Relative importance of spatial and temporal scales in a patchy environment. Theoretical Population Biology, 1992, 41, 300-314.	0.5	161
50	Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biological Conservation, 2015, 184, 117-126.	1.9	160
51	Effect of Spatial Arrangement of Habitat Patches on Local Population Size. Ecology, 1988, 69, 468-475.	1.5	154
52	Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172242.	1.2	153
53	Measures to reduce population fragmentation by roads: what has worked and how do we know?. Trends in Ecology and Evolution, 2012, 27, 374-380.	4.2	148
54	EFFECT OF HABITAT FRAGMENTATION ON THE EXTINCTION THRESHOLD: A SYNTHESIS*., 2002, 12, 346-353.		144

#	Article	IF	CITATIONS
55	The relative effects of road traffic and forest cover on anuran populations. Biological Conservation, 2008, 141, 35-46.	1.9	143
56	Evaluating the effectiveness of road mitigation measures. Biodiversity and Conservation, 2013, 22, 425-448.	1.2	140
57	Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecology Letters, 2020, 23, 674-681.	3.0	139
58	Why do several small patches hold more species than few large patches?. Global Ecology and Biogeography, 2020, 29, 615-628.	2.7	136
59	Are the negative effects of roads on breeding birds caused by traffic noise?. Journal of Applied Ecology, 2011, 48, 1527-1534.	1.9	134
60	Evaluation of patch isolation metrics in mosaic landscapes for specialist vs. generalist dispersers. Landscape Ecology, 2003, 18, 41-50.	1.9	131
61	Positive effects of forest fragmentation, independent of forest amount, on bat abundance in eastern Ontario, Canada. Landscape Ecology, 2011, 26, 865-876.	1.9	130
62	Quantifying the Road-Effect Zone: Threshold Effects of a Motorway on Anuran Populations in Ontario, Canada. Ecology and Society, 2009, 14, .	1.0	123
63	Title is missing!. Euphytica, 1997, 97, 255-263.	0.6	121
64	Determinants of local population size in patchy habitats. Theoretical Population Biology, 1988, 34, 194-213.	0.5	119
65	Raccoon Habitat Use at 2 Spatial Scales. Journal of Wildlife Management, 1997, 61, 102.	0.7	119
66	The Rauischholzhausen Agenda for Road Ecology. Ecology and Society, 2007, 12, .	1.0	119
67	Effect of woody borders on insect density and diversity in crop fields: a landscape-scale analysis. Agriculture, Ecosystems and Environment, 2000, 78, 115-122.	2.5	116
68	A speciesâ€centered approach for uncovering generalities in organism responses to habitat loss and fragmentation. Ecography, 2014, 37, 517-527.	2.1	114
69	Habitat fragmentation: A long and tangled tale. Global Ecology and Biogeography, 2019, 28, 33-41.	2.7	112
70	Patch Size and Population Density: the Effect of Immigration Behavior. Ecology and Society, 2002, 6, .	0.9	110
71	Accessible habitat: an improved measure of the effects of habitat loss and roads on wildlife populations. Landscape Ecology, 2008, 23, 159-168.	1.9	107
72	The advantage of long-distance clonal spreading in highly disturbed habitats. Evolutionary Ecology, 1994, 8, 172-187.	0.5	105

#	Article	IF	Citations
73	Effect of landscape context on anuran communities in breeding ponds in the National Capital Region, Canada. Landscape Ecology, 2007, 22, 205-215.	1.9	105
74	New policy directions for global pond conservation. Conservation Letters, 2018, 11, e12447.	2.8	104
75	Landscape structure influences continental distribution of hantavirus in deer mice. Landscape Ecology, 2001, 16, 255-266.	1.9	101
76	Plasticity in the vocalizations of anurans in response to traffic noise. Acta Oecologica, 2010, 36, 463-470.	0.5	101
77	Sub-optimal study design has major impacts on landscape-scale inference. Biological Conservation, 2011, 144, 298-305.	1.9	101
78	Effects of habitat loss, habitat configuration and matrix composition on declining wetland species. Biological Conservation, 2013, 160, 200-208.	1.9	101
79	Habitat Availability Causes the Species Abundance-Distribution Relationship. Oikos, 1996, 76, 564.	1.2	98
80	Optimizing landscape selection for estimating relative effects of landscape variables on ecological responses. Landscape Ecology, 2013, 28, 371-383.	1.9	98
81	Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landscape Ecology, 2016, 31, 951-968.	1.9	97
82	Measuring and selecting scales of effect for landscape predictors in species–habitat models. Ecological Applications, 2012, 22, 2277-2292.	1.8	96
83	Spatial characteristics of habitat patches and population survival. Ecological Modelling, 1985, 30, 297-308.	1.2	88
84	Importance of patch scale vs landscape scale on selected forest birds. Oikos, 2002, 96, 110-118.	1.2	88
85	Does forest fragmentation cause an increase in forest temperature?. Ecological Research, 2017, 32, 81-88.	0.7	87
86	Testing the habitat amount hypothesis for South American small mammals. Biological Conservation, 2017, 209, 304-314.	1.9	86
87	Effect of landscape structure on the movement behaviour of a specialized goldenrod beetle, Trirhabda borealis. Canadian Journal of Zoology, 2002, 80, 24-35.	0.4	85
88	Assessing Habitat Fragmentation Effects on Primates: The Importance of Evaluating Questions at the Correct Scale., 2013,, 13-28.		85
89	Body size affects the spatial scale of habitat-beetle interactions. Oikos, 2005, 110, 101-108.	1.2	84
90	When roadâ€kill hotspots do not indicate the best sites for roadâ€kill mitigation. Journal of Applied Ecology, 2017, 54, 1544-1551.	1.9	84

#	Article	IF	CITATIONS
91	Effects of surrounding urbanization on non-native flora in small forest patches. Landscape Ecology, 2007, 22, 589-599.	1.9	79
92	Effect of Habitat Patch Characteristics on Abundance and Diversity of Insects in an Agricultural Landscape. Ecosystems, 1998, 1, 197-205.	1.6	78
93	Short-term response of ground beetles (Coleoptera: Carabidae) to fire and logging in a spruce-dominated boreal landscape. Forest Ecology and Management, 2005, 212, 118-126.	1.4	78
94	Why is a landscape perspective important in studies of primates?. American Journal of Primatology, 2014, 76, 901-909.	0.8	77
95	An experimental test of the habitatâ€∎mount hypothesis for saproxylic beetles in a forested region. Ecology, 2017, 98, 1613-1622.	1.5	75
96	Maintenance of sorghum (sorghum bicolor, poaceae) landrace diversity by farmers' selection in Ethiopia. Economic Botany, 1999, 53, 79-88.	0.8	74
97	Focal patch landscape studies for wildlife management: Optimizing sampling effort across scales. , 2002, , 68-91.		74
98	Do birds and beetles show similar responses to urbanization?., 2011, 21, 2297-2312.		72
99	Effects of farmland heterogeneity on biodiversity are similar to—or even larger than—the effects of farming practices. Agriculture, Ecosystems and Environment, 2020, 288, 106698.	2.5	72
100	A transient, positive effect of habitat fragmentation on insect population densities. Oecologia, 2004, 141, 444-451.	0.9	70
101	Effect of road density on abundance of white-footed mice. Landscape Ecology, 2007, 22, 1501-1512.	1.9	69
102	Effects of landscape structure on butterfly species richness and abundance in agricultural landscapes in eastern Ontario, Canada. Agriculture, Ecosystems and Environment, 2012, 156, 123-133.	2.5	68
103	On the use of connectivity measures in spatial ecology. A reply. Oikos, 2001, 95, 152-155.	1.2	67
104	Why are some animal populations unaffected or positively affected by roads?. Oecologia, 2013, 173, 1143-1156.	0.9	67
105	Landscape context affects genetic diversity at a much larger spatial extent than population abundance. Ecology, 2014, 95, 871-881.	1.5	67
106	Reconsidering the role of â€~semiâ€natural habitat' in agricultural landscape biodiversity: a case study. Ecological Research, 2015, 30, 75-83.	0.7	67
107	Targets for maintenance of dead wood for biodiversity conservation based on extinction thresholds. Scandinavian Journal of Forest Research, 2006, 21, 201-208.	0.5	66
108	Reproductive rate and body size predict road impacts on mammal abundance., 2011, 21, 589-600.		64

#	Article	IF	CITATIONS
109	EVIDENCE OF LARGE-SCALE SOURCE–SINK DYNAMICS AND LONG-DISTANCE DISPERSAL AMONG WOOD THRUSH POPULATIONS. Ecology, 2006, 87, 3029-3036.	1.5	63
110	EFFECT OF REPRODUCTIVE RATE ON MINIMUM HABITAT REQUIREMENTS OF FOREST-BREEDING BIRDS. Ecology, 2003, 84, 2643-2653.	1.5	61
111	Movement Patterns of Eastern Chipmunks (<i>Tamias striatus</i>) Near Roads. Journal of Mammalogy, 2008, 89, 895-903.	0.6	60
112	Experimental study designs to improve the evaluation of road mitigation measures for wildlife. Journal of Environmental Management, 2015, 154, 48-64.	3.8	58
113	Farmland heterogeneity benefits bats in agricultural landscapes. Agriculture, Ecosystems and Environment, 2018, 253, 131-139.	2.5	58
114	Behavioral Responses of Northern Leopard Frogs (Rana pipiens) to Roads and Traffic: Implications for Population Persistence. Ecology and Society, 2009, 14, .	1.0	57
115	Influence of crop type, heterogeneity and woody structure on avian biodiversity in agricultural landscapes. Ecological Indicators, 2017, 83, 218-226.	2.6	57
116	A global assessment of primate responses to landscape structure. Biological Reviews, 2019, 94, 1605-1618.	4.7	57
117	Landscape pattern and population conservation. , 1995, , 293-308.		55
118	Predator Stomachs as Sampling Tools for Prey Distribution: Atlantic Cod (<i>Gadus morhua</i>) and Capelin (<i>Mallotus villosus</i>). Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50, 1541-1547.	0.7	54
119	Diet and body size of North American mammal road mortalities. Transportation Research, Part D: Transport and Environment, 2007, 12, 498-505.	3.2	53
120	How far do songbirds disperse?. Ecography, 2009, 32, 1051-1061.	2.1	53
121	Responses of anurans to composition and configuration of agricultural landscapes. Agriculture, Ecosystems and Environment, 2017, 239, 399-409.	2.5	53
122	Mechanisms Affecting Population Density in Fragmented Habitat. Ecology and Society, 2005, 10, .	1.0	52
123	The disproportionately high value of small patches for biodiversity conservation. Conservation Letters, 2022, 15, .	2.8	52
124	Habitat loss decreases predator-prey ratios in a pine-bark beetle system. Oikos, 2005, 110, 265-270.	1.2	49
125	Relative effects of landscape composition and configuration on multi-habitat gamma diversity in agricultural landscapes. Agriculture, Ecosystems and Environment, 2017, 241, 62-69.	2.5	49
126	Measuring Protectedâ€Area Isolation and Correlations of Isolation with Landâ€Use Intensity and Protection Status. Conservation Biology, 2012, 26, 610-618.	2.4	48

#	Article	IF	CITATIONS
127	When to monitor and when to act: Value of information theory for multiple management units and limited budgets. Journal of Applied Ecology, 2018, 55, 2102-2113.	1.9	48
128	The scale of effect of landscape context varies with the species' response variable measured. Landscape Ecology, 2019, 34, 703-715.	1.9	48
129	Resolving the <scp>SLOSS</scp> dilemma for biodiversity conservation: a research agenda. Biological Reviews, 2022, 97, 99-114.	4.7	48
130	Configurational crop heterogeneity increases withinâ€field plant diversity. Journal of Applied Ecology, 2020, 57, 654-663.	1.9	47
131	Gap crossing by chipmunks: an experimental test of landscape connectivity. Canadian Journal of Zoology, 2002, 80, 1556-1561.	0.4	46
132	When is a landscape perspective important?., 2005,, 3-10.		46
133	Population Ecology in Spatially Heterogeneous Environments. , 2005, , 95-118.		45
134	Predicting species diversity in agricultural environments using Landsat TM imagery. Remote Sensing of Environment, 2014, 144, 214-225.	4.6	45
135	The trade-off between housing density and sprawl area: Minimising impacts to forest breeding birds. Basic and Applied Ecology, 2010, 11, 723-733.	1.2	44
136	A general model of populations in patchy habitats. Applied Mathematics and Computation, 1988, 27, 53-66.	1.4	43
137	Interpatch dispersal of the cabbage butterfly. Canadian Journal of Zoology, 1987, 65, 616-622.	0.4	42
138	Traditional farmers' knowledge of sorghum (sorghum bicolor [Poaceae]) landrace storability in Ethiopia. Economic Botany, 1999, 53, 69-78.	0.8	42
139	Edge effects created by wildfire and clear-cutting on boreal forest ground-dwelling spiders. Forest Ecology and Management, 2008, 255, 1434-1445.	1.4	42
140	Relative effects of landscapeâ€scale wetland amount and landscape matrix quality on wetland vertebrates: a metaâ€analysis. Ecological Applications, 2015, 25, 812-825.	1.8	41
141	A simple landscape design framework for biodiversity conservation. Landscape and Urban Planning, 2015, 136, 13-27.	3.4	41
142	How to quantify a distanceâ€dependent landscape effect on a biological response. Methods in Ecology and Evolution, 2017, 8, 1717-1724.	2.2	41
143	Effects of a recent wildfire and clearcuts on ground-dwelling boreal forest spider assemblages. Canadian Journal of Forest Research, 2005, 35, 2575-2588.	0.8	40
144	Road kill hotspots do not effectively indicate mitigation locations when past road kill has depressed populations. Journal of Wildlife Management, 2013, 77, 1353-1359.	0.7	39

#	Article	IF	Citations
145	A comparison of patch connectivity measures using data on invertebrates in hollow oaks. Ecography, 2010, 33, 971-978.	2.1	38
146	Detecting human-driven deviations from trajectories in landscape composition and configuration. Landscape Ecology, 2010, 25, 1479-1487.	1.9	37
147	Potential net effects of climate change on High Arctic Peary caribou: Lessons from a spatially explicit simulation model. Ecological Modelling, 2007, 207, 85-98.	1.2	36
148	Reduced human activity during COVID-19 alters avian land use across North America. Science Advances, 2021, 7, eabf5073.	4.7	36
149	On Succession in A Saxicolous Lichen Community. Lichenologist, 1985, 17, 167-172.	0.5	35
150	Predicting spatial occurrence of beetles and pseudoscorpions in hollow oaks in southeastern Sweden. Biodiversity and Conservation, 2011, 20, 2027-2040.	1.2	34
151	Can anthropogenic linear gaps increase plant abundance and diversity?. Landscape Ecology, 2016, 31, 721-729.	1.9	34
152	Simulation Methods for Developing General Landscape-Level Hypotheses of Single-Species Dynamics. Ecological Studies, 1991, , 417-442.	0.4	33
153	Low Reproductive Rate Predicts Species Sensitivity to Habitat Loss: A Meta-Analysis of Wetland Vertebrates. PLoS ONE, 2014, 9, e90926.	1.1	32
154	Just a hypothesis: a reply to Hanski. Journal of Biogeography, 2015, 42, 993-994.	1.4	32
155	Habitat specialist birds disperse farther and are more migratory than habitat generalist birds. Ecology, 2018, 99, 2058-2066.	1.5	32
156	Bridging research and practice in conservation. Conservation Biology, 2021, 35, 1725-1737.	2.4	32
157	Effects of time since urbanization on anuran community composition in remnant urban ponds. Environmental Conservation, 2010, 37, 128-135.	0.7	31
158	Influence of canopy cover and amount of open habitat in the surrounding landscape on proportion of alien plant species in forest sites. Ecoscience, 2004, 11, 278-281.	0.6	30
159	Does traffic noise alter calling time in frogs and toads? A case study of anurans in Eastern Ontario, Canada. Urban Ecosystems, 2014, 17, 945-953.	1.1	30
160	Intra-Specific Abundance-Distribution Relationships. Oikos, 1998, 82, 483.	1.2	29
161	Effect of Habitat Fragmentation on the Extinction Threshold: A Synthesis. , 2002, 12, 346.		28
162	The homogenizing influence of agriculture on forest bird communities at landscape scales. Landscape Ecology, 2019, 34, 2385-2399.	1.9	28

#	Article	IF	CITATIONS
163	Avoiding wasted research resources in conservation science. Conservation Science and Practice, 2021, 3, e329.	0.9	28
164	Impacts of Landscape Transformation by Roads. , 2002, , 225-243.		27
165	Flying insect abundance declines with increasing road traffic. Insect Conservation and Diversity, 2018, 11, 608-613.	1.4	26
166	Landscape heterogeneity and metapopulation dynamics. , 0, , 78-91.		24
167	Landscape context is more important than wetland buffers for farmland amphibians. Agriculture, Ecosystems and Environment, 2019, 269, 97-106.	2.5	24
168	Testing for Habitat Detection Distances Using Orientation Data. Oikos, 1999, 84, 160.	1.2	23
169	Mate attraction by male anurans in the presence of traffic noise. Animal Conservation, 2013, 16, 275-285.	1.5	23
170	Similar effects of residential and non-residential vegetation on bird diversity in suburban neighbourhoods. Urban Ecosystems, 2014, 17, 27-44.	1.1	23
171	Bats respond negatively to increases in the amount and homogenization of agricultural land cover. Landscape Ecology, 2019, 34, 1889-1903.	1.9	23
172	Fecundity determines the extinction threshold in a Canadian assemblage of longhorned beetles (Coleoptera: Cerambycidae). Journal of Insect Conservation, 2005, 9, 109-119.	0.8	22
173	Carbon and nitrogen stable isotope ratios differ among invertebrates from field crops, forage crops, and non-cropped land uses. Ecoscience, 2011, 18, 98-109.	0.6	22
174	Culverts alone do not reduce road mortality in anurans. Ecoscience, 2014, 21, 69-78.	0.6	22
175	Inference in road ecology research: what we know versus what we think we know. Biology Letters, 2020, 16, 20200140.	1.0	22
176	Crown Loss and Subsequent Branch Sprouting of Forest Trees in Response to a Major Ice Storm. Journal of the Torrey Botanical Society, 2004, 131, 169.	0.1	21
177	Different Anuran Species Show Different Relationships to Agricultural Intensity. Wetlands, 2016, 36, 731-744.	0.7	21
178	Response of Forest Understory Vegetation to a Major Ice Storm. Journal of the Torrey Botanical Society, 2004, 131, 45.	0.1	20
179	The Trade-off Between Housing Density and Sprawl Area: Minimizing Impacts to Carabid Beetles (Coleoptera: Carabidae). Ecology and Society, 2010, 15, .	1.0	19
180	Habitat Loss and Fragmentation. , 2013, , 50-58.		19

#	Article	IF	CITATIONS
181	From forest and agroâ€ecosystems to the microecosystems of the human body: what can landscape ecology tell us about tumor growth, metastasis, and treatment options?. Evolutionary Applications, 2013, 6, 82-91.	1.5	19
182	Do Roads Reduce Painted Turtle (Chrysemys picta) Populations?. PLoS ONE, 2014, 9, e98414.	1.1	19
183	Influence of traffic mortality on forest bird abundance. Biodiversity and Conservation, 2015, 24, 1507-1529.	1.2	19
184	Positive effects of roads on small mammals: a test of the predation release hypothesis. Ecological Research, 2015, 30, 651-662.	0.7	19
185	Effect of paved road density on abundance of white-tailed deer. Wildlife Research, 2012, 39, 478.	0.7	18
186	Local vs. Landscape Effects of Woody Field Borders as Barriers to Crop Pest Movement. Ecology and Society, 1998, 2, .	0.9	17
187	Modeling density dependence and climatic disturbances in caribou: a case study from the Bathurst Island complex, Canadian High Arctic. Journal of Zoology, 2007, 272, 209-217.	0.8	16
188	Relative effects of vehicle pollution, moisture and colonization sources on urban lichens. Journal of Applied Ecology, 2012, 49, 1467-1474.	1.9	16
189	Disentangling the effects of wetland cover and urban development on quality of remaining wetlands. Urban Ecosystems, 2015, 18, 663-684.	1.1	16
190	Reconciling contradictory relationships between mobility and extinction risk in humanâ€altered landscapes. Functional Ecology, 2016, 30, 1558-1567.	1.7	16
191	Foraging habitat and diet of Song Sparrows (<i>Melospiza melodia</i>) nesting in farmland: a stable isotope approach. Canadian Journal of Zoology, 2012, 90, 1339-1350.	0.4	15
192	Higher bat and prey abundance at organic than conventional soybean fields. Biological Conservation, 2018, 226, 177-185.	1.9	15
193	Movement of small mammals across divided highways with vegetated medians. Canadian Journal of Zoology, 2011, 89, 1214-1222.	0.4	13
194	What the habitat amount hypothesis does and does not predict: A reply to Saura. Journal of Biogeography, 2021, 48, 1530-1535.	1.4	13
195	Homogenization of dispersal ability across bird species in response to landscape change. Oikos, 2017, 126, 996-1003.	1.2	12
196	Local habitat association does not inform landscape management of threatened birds. Landscape Ecology, 2019, 34, 1313-1327.	1.9	11
197	Life in the slow drain: Landscape structure affects farm ditch water quality. Science of the Total Environment, 2019, 656, 1157-1167.	3.9	11
198	EFFECT OF FISH MOVEMENT AND FLEET SPATIAL BEHAVIOR ON MANAGEMENT OF FISH SUBSTOCKS. Natural Resource Modelling, 1993, 7, 37-56.	0.8	10

#	Article	IF	Citations
199	Birds in cultural landscapes: actual and perceived differences between northeastern North America and western Europe., 2012,, 481-515.		10
200	Matrix quality and disturbance frequency drive evolution of species behavior at habitat boundaries. Ecology and Evolution, 2015, 5, 5792-5800.	0.8	10
201	The spatial scale of timeâ€lagged population synchrony increases with species dispersal distance. Global Ecology and Biogeography, 2017, 26, 1201-1210.	2.7	10
202	How the relationship between vegetation cover and land-cover variance constrains biodiversity in a human dominated world. Landscape Ecology, 2021, 36, 3097-3104.	1.9	10
203	Management diversity begets biodiversity in production forest landscapes. Biological Conservation, 2022, 268, 109514.	1.9	10
204	Bird Diversity Unconsciously Increases People's Satisfaction with Where They Live. Land, 2021, 10, 153.	1.2	9
205	The effects of humanâ€altered habitat spatial pattern on frugivory and seed dispersal: a global metaâ€analysis. Oikos, 2022, 2022, .	1.2	9
206	Nature of ecological theories. Ecological Modelling, 1988, 43, 129-132.	1.2	8
207	Are macroinvertebrate traits reliable indicators of specific agrichemicals?. Ecological Indicators, 2020, 111, 105965.	2.6	8
208	Population Stability in a Patchy Environment. Developments in Environmental Modelling, 1983, 5, 61-67.	0.3	8
209	How to rescue Ontario's <i>Endangered Species Act</i> : a biologist's perspective. Facets, 2020, 5, 423-431.	1.1	8
210	Preserving 40% forest cover is a valuable and wellâ€supported conservation guideline: reply to Banksâ€Leite <i>et al</i> . Ecology Letters, 2021, 24, 1114-1116.	3.0	7
211	Reconceptualizing conservation. , 2022, 1, e0000016.		7
212	Higher nestling food biomass in organic than conventional soybean fields in eastern Ontario, Canada. Agriculture, Ecosystems and Environment, 2014, 189, 199-205.	2.5	6
213	A small-scale response of urban bat activity to tree cover. Urban Ecosystems, 2019, 22, 795-805.	1.1	6
214	Forty years of bias in habitat fragmentation research. , 2017, , .		6
215	Testing Holling's texturalâ€discontinuity hypothesis. Journal of Biogeography, 2008, 35, 2149-2150.	1.4	5
216	Wetland buffers are no substitute for landscapeâ€scale conservation. Ecosphere, 2019, 10, e02661.	1.0	5

#	Article	IF	CITATIONS
217	Weak Effects of Owned Outdoor Cat Density on Urban Bird Richness and Abundance. Land, 2021, 10, 507.	1.2	5
218	Relative effects of trap versus trawl fisheries on population dynamics of the northern cod (Gadus) Tj ETQq0 0 0 rg	gBT_lOverlo	ock 10 Tf 50
219	Abundance of aerially-dispersing spiders declines with increasing road traffic. Ecoscience, 2019, 26, 383-388.	0.6	4
220	The influence of landscape context on short―and long―erm forest change following a severe ice storm. Journal of Ecology, 2020, 108, 224-238.	1.9	4
221	Mapping the premigration distribution of eastern Monarch butterflies using community science data. Ecology and Evolution, 2021, 11, 11275-11281.	0.8	4
222	LANDSCAPE COMPLEMENTATION AND METAPOPULATION EFFECTS ON LEOPARD FROG POPULATIONS. , 2000, 81, 2498.		4
223	Reduced predation on roadside nests can compensate for road mortality in roadâ€adjacent turtle populations. Ecosphere, 2022, 13, .	1.0	4
224	Metapopulations and Wildlife Conservation. Journal of Wildlife Management, 1998, 62, 426.	0.7	3
225	Effects of Vegetation Type and Adjacent Agricultural Matrix on Fencerow Use by Small Mammals: A Nonmanipulative Experiment., 1999,, 249-260.		3
226	The Importance of Small Rainforest Patches for Biodiversity Conservation: A Multi-taxonomic Assessment. Topics in Biodiversity and Conservation, 2022, , 41-60.	0.3	3
227	LANDSCAPE COMPLEMENTATION AND METAPOPULATION EFFECTS ON LEOPARD FROG POPULATIONS. , 2000, 81, 2498.		2
228	More milkweed in farmlands containing small, annual crop fields and many hedgerows. Agriculture, Ecosystems and Environment, 2021, 319, 107567.	2.5	0