Anthony Harmar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4233904/publications.pdf Version: 2024-02-01

ANTHONY HADMAD

#	Article	IF	CITATIONS
1	Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature, 1989, 337, 362-364.	27.8	915
2	The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Research, 2014, 42, D1098-D1106.	14.5	826
3	Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nature Neuroscience, 2005, 8, 476-483.	14.8	664
4	The Concise Guide to PHARMACOLOGY 2013/14: G Protein oupled Receptors. British Journal of Pharmacology, 2013, 170, 1459-1581.	5.4	528
5	Polymorphism in serotonin transporter gene associated with susceptibility to major depression. Lancet, The, 1996, 347, 731-733.	13.7	495
6	The VPAC2 Receptor Is Essential for Circadian Function in the Mouse Suprachiasmatic Nuclei. Cell, 2002, 109, 497-508.	28.9	488
7	The VIP ₂ receptor: Molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Letters, 1993, 334, 3-8.	2.8	453
8	International Union of Pharmacology. XLVI. G Protein-Coupled Receptor List. Pharmacological Reviews, 2005, 57, 279-288.	16.0	452
9	Synchronization and Maintenance of Timekeeping in Suprachiasmatic Circadian Clock Cells by Neuropeptidergic Signaling. Current Biology, 2006, 16, 599-605.	3.9	397
10	Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclaseâ€activating polypeptide: IUPHAR Review 1. British Journal of Pharmacology, 2012, 166, 4-17.	5.4	385
11	Family-B G-protein-coupled receptors. Genome Biology, 2001, 2, reviews3013.1.	9.6	270
12	International Union of Basic and Clinical Pharmacology. LXXXVIII. G Protein-Coupled Receptor List: Recommendations for New Pairings with Cognate Ligands. Pharmacological Reviews, 2013, 65, 967-986.	16.0	250
13	International Union of Pharmacology. LVI. Ghrelin Receptor Nomenclature, Distribution, and Function. Pharmacological Reviews, 2005, 57, 541-546.	16.0	215
14	IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels. Nucleic Acids Research, 2009, 37, D680-D685.	14.5	199
15	Overexpression of the 5-Hydroxytryptamine Transporter Gene. Circulation, 2004, 109, 2150-2155.	1.6	192
16	Increased expression of preprotachykinin, calcitonin gene-related peptide, but not vasoactive intestinal peptide messenger RNA in dorsal root ganglia during the development of adjuvant monoarthritis in the rat. Molecular Brain Research, 1992, 16, 143-149.	2.3	174
17	Interdependent Serotonin Transporter and Receptor Pathways Regulate S100A4/Mts1, a Gene Associated With Pulmonary Vascular Disease. Circulation Research, 2005, 97, 227-235.	4.5	147
18	Increased Expression of the 5-HT Transporter Confers a Low- Anxiety Phenotype Linked to Decreased 5-HT Transmission. Journal of Neuroscience, 2006, 26, 8955-8964.	3.6	142

#	Article	IF	CITATIONS
19	The mouse VPAC2receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptidein vitro. European Journal of Neuroscience, 2003, 17, 197-204.	2.6	129
20	Increase in substance P and CGRP, but not somatostatin content of innervating dorsal root ganglia in adjuvant monoarthritis in the rat. Neuroscience Letters, 1992, 137, 257-260.	2.1	115
21	Molecular cloning and expression of a cDNA encoding a receptor for pituitary adenylate cyclase activating polypeptide (PACAP). FEBS Letters, 1993, 329, 99-105.	2.8	111
22	The distribution of vasoactive intestinal peptide2 receptor messenger RNA in the rat brain and pituitary gland as assessed by in situ hybridization. Neuroscience, 1995, 67, 409-418.	2.3	110
23	cDNA sequence of human β-preprotachykinin, the common precursor to substance P and neurokinin A. FEBS Letters, 1986, 208, 67-72.	2.8	97
24	Control of a Novel Adenylyl Cyclase by Calcineurin. Biochemical and Biophysical Research Communications, 1995, 214, 1000-1008.	2.1	97
25	IUPHAR-DB: new receptors and tools for easy searching and visualization of pharmacological data. Nucleic Acids Research, 2011, 39, D534-D538.	14.5	96
26	IUPHAR-DB: updated database content and new features. Nucleic Acids Research, 2013, 41, D1083-D1088.	14.5	94
27	Presence of Multiple Functional Polyadenylation Signals and a Single Nucleotide Polymorphism in the 3′ Untranslated Region of the Human Serotonin Transporter Gene. Journal of Neurochemistry, 1999, 72, 1384-1388.	3.9	88
28	Altered Allelic Distributions of the Serotonin Transporter Gene in Migraine Without Aura and Migraine with Aura. Cephalalgia, 1998, 18, 23-26.	3.9	87
29	Distribution of the VPAC2 Receptor in Peripheral Tissues of the Mouse. Endocrinology, 2004, 145, 1203-1210.	2.8	83
30	Identification and cDNA sequence of δ-preprotachykinin, a fourth splicing variant of the rat substance P precursor. FEBS Letters, 1990, 275, 22-24.	2.8	82
31	Functional Interactions between 5-Hydroxytryptamine Receptors and the Serotonin Transporter in Pulmonary Arteries. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 539-548.	2.5	82
32	Entrainment to Feeding but Not to Light: Circadian Phenotype of VPAC ₂ Receptor-Null Mice. Journal of Neuroscience, 2007, 27, 4351-4358.	3.6	82
33	Converging Evidence in Support of the Serotonin Hypothesis of Dexfenfluramine-Induced Pulmonary Hypertension With Novel Transgenic Mice. Circulation, 2008, 117, 2928-2937.	1.6	82
34	Effect of adrenalectomy and dexamethasone on neuropeptide content of dorsal root ganglia in the rat. Brain Research, 1991, 564, 27-30.	2.2	76
35	Dietary Modulation of Drosophila Sleep-Wake Behaviour. PLoS ONE, 2010, 5, e12062.	2.5	72
36	Thyrotropin-releasing hormone, luteinizing hormone-releasing hormone and substance P immuno-reactivity in post-mortem brain from cases of alzheimer-type dementia and Down's syndrome. Brain Research, 1983, 258, 45-52.	2.2	66

#	Article	IF	CITATIONS
37	Circadian Control of Mouse Heart Rate and Blood Pressure by the Suprachiasmatic Nuclei: Behavioral Effects Are More Significant than Direct Outputs. PLoS ONE, 2010, 5, e9783.	2.5	66
38	Expression of PACAP, and PACAP type 1 (PAC1) receptor mRNA during development of the mouse embryo. Developmental Brain Research, 1998, 109, 245-253.	1.7	65
39	Celsr1, a Neural-Specific Gene Encoding an Unusual Seven-Pass Transmembrane Receptor, Maps to Mouse Chromosome 15 and Human Chromosome 22qter. Genomics, 1997, 45, 97-104.	2.9	64
40	Circadian changes in PACAP type 1 (PAC1) receptor mRNA in the rat suprachiasmatic and supraoptic nuclei. Brain Research, 1998, 813, 218-222.	2.2	59
41	Circadian changes in the expression of vasoactive intestinal peptide 2 receptor mRNA in the rat suprachiasmatic nuclei. Molecular Brain Research, 1998, 54, 108-112.	2.3	55
42	Transgenic approach reveals expression of the VPAC ₂ receptor in phenotypically defined neurons in the mouse suprachiasmatic nucleus and in its efferent target sites. European Journal of Neuroscience, 2004, 19, 2201-2211.	2.6	54
43	Expression of the human PAC1 receptor leads to dose-dependent hydrocephalus-related abnormalities in mice. Journal of Clinical Investigation, 2006, 116, 1924-1934.	8.2	51
44	Intranigral injection of capsaicin enhances motor activity and depletes nigral 5-hydroxytryptamine but not substance P. Neuropharmacology, 1981, 20, 341-346.	4.1	43
45	Association of Short Alleles of a VNTR of the Serotonin Transporter Gene with Anxiety Symptoms in Patients Presenting After Deliberate Self Harm. Neuropharmacology, 1997, 36, 439-443.	4.1	43
46	VIP receptors control excitability of suprachiasmatic nuclei neurones. Pflugers Archiv European Journal of Physiology, 2006, 452, 7-15.	2.8	43
47	Evidence that genetic variation in 5-HT transporter expression is linked to changes in 5-HT2A receptor function. Neuropharmacology, 2008, 54, 776-783.	4.1	41
48	The expression of the calcitonin receptor gene in the brain and pituitary gland of the rat. Neuroscience Letters, 1994, 181, 31-34.	2.1	40
49	Chromosomal Localization in Mouse and Human of the Vasoactive Intestinal Peptide Receptor Type 2 Gene: A Possible Contributor to the Holoprosencephaly 3 Phenotype. Genomics, 1996, 37, 345-353.	2.9	40
50	The Neurotransmitter VIP Expands the Pool of Symmetrically Dividing Postnatal Dentate Gyrus Precursors via VPAC2Receptors or Directs Them Toward a Neuronal Fate via VPAC1receptors. Stem Cells, 2009, 27, 2539-2551.	3.2	37
51	Expression of pituitary adenylate cyclase activating polypeptide receptors in the early mouse embryo as assessed by reverse transcription polymerase chain reaction and in situ hybridisation. Neuroscience Letters, 1996, 216, 45-48.	2.1	31
52	5′-Flanking Sequences from the Rat Preprotachykinin Gene Direct High-Level Expression of a Reporter Gene in Adult Rat Sensory Neurons Transfected in Culture by Microinjection. Molecular and Cellular Neurosciences, 1993, 4, 164-172.	2.2	28
53	Local changes in cerebral 2-deoxyglucose uptake during alphaxalone anaesthesia with special reference to the Habenulo-Interpeduncular system. Brain Research, 1984, 300, 19-26.	2.2	24
54	Identification of Nerve Growth Factor-Responsive Sequences Within the 5′ Region of the Bovine Preprotachykinin Gene. DNA and Cell Biology, 1991, 10, 743-749.	1.9	24

#	Article	IF	CITATIONS
55	Activation of Thiazide-Sensitive Co-Transport by Angiotensin II in the cyp1a1-Ren2 Hypertensive Rat. PLoS ONE, 2012, 7, e36311.	2.5	24
56	Rat sensory ganglia incorporate radiolabelled amino acids into substance K (neurokinin α) in vitro. Neuroscience Letters, 1984, 51, 387-391.	2.1	22
57	Desensitization of the Human Vasoactive Intestinal Peptide Receptor (hVIP2/PACAP R): Evidence for Agonist-Induced Receptor Phosphorylation and Internalizationa. Annals of the New York Academy of Sciences, 1998, 865, 64-72.	3.8	22
58	Structure of the human VIPR2 gene for vasoactive intestinal peptide receptor type 2. FEBS Letters, 1999, 458, 197-203.	2.8	21
59	Association between the serotonin transporter gene and affective disorder: The evidence so far. Molecular Medicine, 1997, 3, 90-93.	4.4	20
60	[23] Methods for the identification of neuropeptide processing products: Somatostatin and the tachykinins. Methods in Enzymology, 1986, 124, 335-348.	1.0	18
61	Refined mapping of the human serotonin transporter (SLC6A4) gene within 17q11 adjacent to the CPD and NF1 genes. European Journal of Human Genetics, 2000, 8, 75-78.	2.8	18
62	Characterization and partial purification of a 5,700 dalton form of substance P-like immunoreactivity from the rat hypothalamus. Brain Research, 1984, 323, 342-344.	2.2	17
63	Timed feeding of mice modulates lightâ€entrained circadian rhythms of reticulated platelet abundance and plasma thrombopoietin and affects gene expression in megakaryocytes. British Journal of Haematology, 2009, 146, 185-192.	2.5	17
64	Is systems pharmacology ready to impact upon therapy development? A study on the cholesterol biosynthesis pathway. British Journal of Pharmacology, 2017, 174, 4362-4382.	5.4	17
65	Distribution of neuropeptides in dorsal root ganglia of the rat; substance P, somatostatin and calcitonin gene-related peptide. Neuroscience Letters, 1993, 153, 5-8.	2.1	16
66	Different patterns of molecular forms of somatostatin are released by the rat median eminence and hypothalamus. Neuroscience Letters, 1985, 57, 215-220.	2.1	15
67	Receptors for gut peptides. Best Practice and Research in Clinical Endocrinology and Metabolism, 2004, 18, 463-475.	4.7	12
68	3.3 kb of 5′ flanking DNA from the rat preprotachykinin gene directs high level expression of a reporter gene in microinjected dorsal root ganglion neurons but not in transgenic mice. Regulatory Peptides, 1993, 46, 67-69.	1.9	11
69	Sex influences the effect of a lifelong increase in serotonin transporter function on cerebral metabolism. Journal of Neuroscience Research, 2009, 87, 2375-2385.	2.9	11
70	New updated GRAC Fifth Edition with searchable online version Launch of new portal Guide to Pharmacology in association with NC-IUPHAR Transporter-Themed Issue. British Journal of Pharmacology, 2011, 164, 1749-1750.	5.4	10
71	A single-stranded DNA binding protein which interacts with sequences within the bovine preprotachykinin promoter: Regulation by nerve growth factor. Biochemical and Biophysical Research Communications, 1992, 187, 1395-1400.	2.1	9
72	Evolving pharmacology of orphan <scp>GPCR</scp> s: IUPHAR Commentary. British Journal of Pharmacology, 2013, 170, 693-695.	5.4	8

#	Article	IF	CITATIONS
73	The sequence of 5′ flanking DNA from the rat preprotachykinin gene; analysis of putative transcription factor binding sites. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1172, 361-363.	2.4	7
74	Function and dysfunction in the nervous system. Trends in Neurosciences, 1996, 19, 449-450.	8.6	7
75	A hVIPR transgene as a novel tool for the analysis of circadian function in the mouse suprachiasmatic nucleus. European Journal of Neuroscience, 2003, 17, 2502-2502.	2.6	6
76	An antiserum to the C-terminus of the Alzheimer amyloid precursor recognizes a soluble 70 kDa protein. FEBS Letters, 1988, 237, 196-198.	2.8	5
77	Localization of beta pre-protachykinin mRNA in nodose ganglion. Neuropeptides, 1991, 20, 145-150.	2.2	5
78	An antiserum to the extracellular domain of the Alzheimer amyloid precursor recognizes 70 and 88 kDa brain proteins. FEBS Letters, 1989, 257, 238-240.	2.8	3
79	GuideToPharmacology.org – an update. British Journal of Pharmacology, 2012, 167, 697-698.	5.4	3
80	How to Use the IUPHAR Receptor Database to Navigate Pharmacological Data. Methods in Molecular Biology, 2012, 897, 15-29.	0.9	2
81	Calling all pharmacologists with time to spare! We need you! Build the drug discovery knowledge base, GuidetoPharmacology.org. British Journal of Pharmacology, 2012, 167, 1393-1394.	5.4	1
82	Peptides and Amines in Alzheimer-Type Dementia and Downïź½s Syndrome. Interdisciplinary Topics in Gerontology and Geriatrics, 1985, 19, 175-183.	2.6	0
83	The effect of nerve growth factor on afferent neurons. European Journal of Pharmacology, 1990, 183, 2037-2038.	3.5	0
84	IUPHAR-DB: An Expert-Curated, Peer-Reviewed Database of Receptors and Ion Channels. Nature Precedings, 2009, , .	0.1	0
85	Biosynthesis of the Tachykinins and Somatostatin. , 1986, , 147-158.		0
86	The Role of RNA Splicing and Post-Translational Proteolytic Processing in the Biosynthesis of Neuropeptides. , 1988, , 29-33.		0