
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4233391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of genome space occupation in ferns: linking genome diversity and species richness. Annals of Botany, 2023, 131, 59-70.	2.9	14
2	A Comprehensive Phylogenomic Platform for Exploring the Angiosperm Tree of Life. Systematic Biology, 2022, 71, 301-319.	5.6	107
3	Applicationâ€based guidelines for best practices in plant flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 749-781.	1.5	34
4	A taxonomic, genetic and ecological data resource for the vascular plants of Britain and Ireland. Scientific Data, 2022, 9, 1.	5.3	86
5	Genome Insights into Autopolyploid Evolution: A Case Study in Senecio doronicum (Asteraceae) from the Southern Alps. Plants, 2022, 11, 1235.	3.5	6
6	A haploid pseudo-chromosome genome assembly for a keystone sagebrush species of western North American rangelands. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	3
7	The ecology of palm genomes: repeatâ€associated genome size expansion is constrained by aridity. New Phytologist, 2022, 236, 433-446.	7.3	10
8	Evolutionary dynamics of transposable elements and satellite DNAs in polyploid Spartina species. Plant Science, 2021, 302, 110671.	3.6	9
9	Crop wild phylorelatives (CWPs): phylogenetic distance, cytogenetic compatibility and breeding system data enable estimation of crop wild relative gene pool classification. Botanical Journal of the Linnean Society, 2021, 195, 1-33.	1.6	23
10	Systematics and Evolution of the Genus Phoenix: Towards Understanding Date Palm Origins. Compendium of Plant Genomes, 2021, , 29-54.	0.5	2
11	Best practices in plant cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 311-317.	1.5	16
12	Biogeography and genome size evolution of the oldest extant vascular plant genus, <i>Equisetum</i> (Equisetaceae). Annals of Botany, 2021, 127, 681-695.	2.9	9
13	Low dispersal and ploidy differences in a grass maintain photosynthetic diversity despite gene flow and habitat overlap. Molecular Ecology, 2021, 30, 2116-2130.	3.9	12
14	Lineageâ€specific vs. universal: A comparison of the Compositae1061 and Angiosperms353 enrichment panels in the sunflower family. Applications in Plant Sciences, 2021, 9, .	2.1	19
15	Molecular Clocks and Archeogenomics of a Late Period Egyptian Date Palm Leaf Reveal Introgression from Wild Relatives and Add Timestamps on the Domestication. Molecular Biology and Evolution, 2021, 38, 4475-4492.	8.9	14
16	Targeting Ascomycota genomes: what and how big?. Fungal Biology Reviews, 2021, 36, 52-59.	4.7	9
17	The Welwitschia genome reveals aÂunique biology underpinning extreme longevity in deserts. Nature Communications, 2021, 12, 4247.	12.8	51
18	Hundreds of nuclear and plastid loci yield novel insights into orchid relationships. American Journal of Botany, 2021, 108, 1166-1180.	1.7	35

#	Article	IF	CITATIONS
19	Genome downsizing after polyploidy: mechanisms, rates and selection pressures. Plant Journal, 2021, 107, 1003-1015.	5.7	48
20	The nature of intraspecific and interspecific genome size variation in taxonomically complex eyebrights. Annals of Botany, 2021, 128, 639-651.	2.9	22
21	Genome Size Doubling Arises From the Differential Repetitive DNA Dynamics in the Genus Heloniopsis (Melanthiaceae). Frontiers in Genetics, 2021, 12, 726211.	2.3	11
22	Exploring environmental selection on genome size in angiosperms. Trends in Plant Science, 2021, 26, 1039-1049.	8.8	44
23	The Application of Flow Cytometry for Estimating Genome Size, Ploidy Level Endopolyploidy, and Reproductive Modes in Plants. Methods in Molecular Biology, 2021, 2222, 325-361.	0.9	41
24	The Plant DNA Câ€values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist, 2020, 226, 301-305.	7.3	206
25	Repeat-sequence turnover shifts fundamentally in species with large genomes. Nature Plants, 2020, 6, 1325-1329.	9.3	87
26	Genome Size Evolution and Dynamics in Iris, with Special Focus on the Section Oncocyclus. Plants, 2020, 9, 1687.	3.5	2
27	Untapped resources for medical research. Science, 2020, 369, 781-782.	12.6	9
28	The correlation of phylogenetics, elevation and ploidy on the incidence of apomixis in Asteraceae in the European Alps. Botanical Journal of the Linnean Society, 2020, 194, 410-422.	1.6	11
29	How diverse is heterochromatin in the Caesalpinia group? Cytogenomic characterization of Erythrostemon hughesii Gagnon & G.P. Lewis (Leguminosae: Caesalpinioideae). Planta, 2020, 252, 49.	3.2	13
30	Selecting for useful properties of plants and fungi – Novel approaches, opportunities, and challenges. Plants People Planet, 2020, 2, 409-420.	3.3	17
31	Polyploidy in gymnosperms – Insights into the genomic and evolutionary consequences of polyploidy in Ephedra. Molecular Phylogenetics and Evolution, 2020, 147, 106786.	2.7	20
32	Revisiting the cytomolecular evolution of the Caesalpinia group (Leguminosae): a broad sampling reveals new correlations between cytogenetic and environmental variables. Plant Systematics and Evolution, 2020, 306, 1.	0.9	8
33	Automated video monitoring of insect pollinators in the field. Emerging Topics in Life Sciences, 2020, 4, 87-97.	2.6	33
34	Contrasted histories of organelle and nuclear genomes underlying physiological diversification in a grass species. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201960.	2.6	18
35	Repetitive DNA Dynamics and Polyploidization in the Genus Nicotiana (Solanaceae). Compendium of Plant Genomes, 2020, , 85-99.	0.5	4
36	A Target Capture-Based Method to Estimate Ploidy From Herbarium Specimens. Frontiers in Plant Science, 2019, 10, 937.	3.6	53

#	Article	IF	CITATIONS
37	A customized nuclear target enrichment approach for developing a phylogenomic baseline for <i>Dioscorea</i> yams (Dioscoreaceae). Applications in Plant Sciences, 2019, 7, e11254.	2.1	49
38	Polyploidy does not control all: Lineageâ€specific average chromosome length constrains genome size evolution in ferns. Journal of Systematics and Evolution, 2019, 57, 418-430.	3.1	16
39	Genome-wide association mapping of date palm fruit traits. Nature Communications, 2019, 10, 4680.	12.8	75
40	Evolutionary convergence or homology? Comparative cytogenomics of Caesalpinia group species (Leguminosae) reveals diversification in the pericentromeric heterochromatic composition. Planta, 2019, 250, 2173-2186.	3.2	17
41	Factors Affecting Targeted Sequencing of 353 Nuclear Genes From Herbarium Specimens Spanning the Diversity of Angiosperms. Frontiers in Plant Science, 2019, 10, 1102.	3.6	124
42	Polyploidy in the Conifer Genus Juniperus: An Unexpectedly High Rate. Frontiers in Plant Science, 2019, 10, 676.	3.6	33
43	Interactions between plant genome size, nutrients and herbivory by rabbits, molluscs and insects on a temperate grassland. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182619.	2.6	16
44	Do tropical plants have smaller genomes? Correlation between genome size and climatic variables in the Caesalpinia Group (Caesalpinioideae, Leguminosae). Perspectives in Plant Ecology, Evolution and Systematics, 2019, 38, 13-23.	2.7	30
45	A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering. Systematic Biology, 2019, 68, 594-606.	5.6	371
46	Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms. Annals of Botany, 2019, 123, 767-781.	2.9	23
47	Evolutionary and functional potential of ploidy increase within individual plants: somatic ploidy mapping of the complex labellum of sexually deceptive bee orchids. Annals of Botany, 2018, 122, 133-150.	2.9	17
48	A roadmap for global synthesis of the plant tree of life. American Journal of Botany, 2018, 105, 614-622.	1.7	38
49	A genome for gnetophytes and early evolution of seed plants. Nature Plants, 2018, 4, 82-89.	9.3	151
50	Functional and evolutionary genomic inferences in <i>Populus</i> through genome and population sequencing of American and European aspen. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10970-E10978.	7.1	84
51	Satellite DNA in Paphiopedilum subgenus Parvisepalum as revealed by high-throughput sequencing and fluorescent in situ hybridization. BMC Genomics, 2018, 19, 578.	2.8	15
52	Genome Size Diversity and Its Impact on the Evolution of Land Plants. Genes, 2018, 9, 88.	2.4	244
53	Cytogenetic insights into an oceanic island radiation: The dramatic evolution of preâ€existing traits in <i>Cheirolophus</i> (Asteraceae: Cardueae: Centaureinae). Taxon, 2017, 66, 146-157.	0.7	12
54	Is There an Upper Limit to Genome Size?. Trends in Plant Science, 2017, 22, 567-573.	8.8	86

#	Article	IF	CITATIONS
55	Genomic gigantism in the whisk-fern family (Psilotaceae): Tmesipteris obliqua challenges record holder Paris japonica. Botanical Journal of the Linnean Society, 2017, 183, 509-514.	1.6	24
56	Genome size dynamics in tribe Gilliesieae (Amaryllidaceae, subfamily Allioideae) in the context of polyploidy and unusual incidence of Robertsonian translocations. Botanical Journal of the Linnean Society, 2017, 184, 16-31.	1.6	24
57	Impacts of Nitrogen and Phosphorus: From Genomes to Natural Ecosystems and Agriculture. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	168
58	Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytologist, 2016, 210, 1072-1082.	7.3	116
59	Genome size and ploidy influence angiosperm species' biomass under nitrogen and phosphorus limitation. New Phytologist, 2016, 210, 1195-1206.	7.3	117
60	Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait. Molecular Ecology, 2016, 25, 6107-6123.	3.9	51
61	Digests: Salamanders' slow slither into genomic gigantism*. Evolution; International Journal of Organic Evolution, 2016, 70, 2915-2916.	2.3	5
62	Persistence, dispersal and genetic evolution of recently formed Spartina homoploid hybrids and allopolyploids in Southern England. Biological Invasions, 2016, 18, 2137-2151.	2.4	19
63	Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma, 2016, 125, 683-699.	2.2	56
64	Salix transect of Europe: variation in ploidy and genome size in willow-associated common nettle, Urtica dioica L. sens. lat., from Greece to arctic Norway. Biodiversity Data Journal, 2016, 4, e10003.	0.8	7
65	Angiosperms Are Unique among Land Plant Lineages in the Occurrence of Key Genes in the RNA-Directed DNA Methylation (RdDM) Pathway. Genome Biology and Evolution, 2015, 7, 2648-2662.	2.5	46
66	Genome size diversity in angiosperms and its influence on gene space. Current Opinion in Genetics and Development, 2015, 35, 73-78.	3.3	73
67	250 years of hybridization between two biennial herb species without speciation. AoB PLANTS, 2015, 7, plv081.	2.3	6
68	Analysis of the giant genomes of <i><scp>F</scp>ritillaria</i> (<scp>L</scp> iliaceae) indicates that a lack of <scp>DNA</scp> removal characterizes extreme expansions in genome size. New Phytologist, 2015, 208, 596-607.	7.3	122
69	Are the genomes of royal ferns really frozen in time? Evidence for coinciding genome stability and limited evolvability in the royal ferns. New Phytologist, 2015, 207, 10-13.	7.3	25
70	The hidden side of plant invasions: the role of genome size. New Phytologist, 2015, 205, 994-1007.	7.3	99
71	Genomic Repeat Abundances Contain Phylogenetic Signal. Systematic Biology, 2015, 64, 112-126.	5.6	126
72	In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS ONE, 2015, 10, e0143424.	2.5	172

#	Article	IF	CITATIONS
73	Endogenous pararetrovirus sequences associated with 24Ânt small <scp>RNA</scp> s at the centromeres of <i>Fritillaria imperialis </i> <scp>L</scp> . (<scp>L</scp> iliaceae), a species with a giant genome. Plant Journal, 2014, 80, 823-833.	5.7	32
74	A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family <scp>M</scp> elanthiaceae. New Phytologist, 2014, 201, 1484-1497.	7.3	83
75	Reconstructing relative genome size of vascular plants through geological time. New Phytologist, 2014, 201, 636-644.	7.3	39
76	The Application of Flow Cytometry for Estimating Genome Size and Ploidy Level in Plants. Methods in Molecular Biology, 2014, 1115, 279-307.	0.9	66
77	Recent updates and developments to plant genome size databases. Nucleic Acids Research, 2014, 42, D1159-D1166.	14.5	47
78	Evolutionary relationships in the medicinally important genus Fritillaria L. (Liliaceae). Molecular Phylogenetics and Evolution, 2014, 80, 11-19.	2.7	75
79	Ecological and evolutionary significance of genomic GC content diversity in monocots. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4096-102.	7.1	260
80	Impact of genomic diversity in river ecosystems. Trends in Plant Science, 2014, 19, 361-366.	8.8	12
81	Plant Genome Diversity Volume 2. , 2013, , .		25
82	Genome Size and the Phenotype. , 2013, , 323-344.		76
83	Genome Size Diversity and Evolution in Land Plants. , 2013, , 307-322.		99
84	Genome size variation in Orchidaceae subfamily Apostasioideae: filling the phylogenetic gap. Botanical Journal of the Linnean Society, 2013, 172, 95-105.	1.6	27
85	Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies). Genome, 2013, 56, 437-449.	2.0	41
86	Genome size expansion and the relationship between nuclear DNA content and spore size in the Asplenium monanthes fern complex (Aspleniaceae). BMC Plant Biology, 2013, 13, 219.	3.6	27
87	Why size really matters when sequencing plant genomes. Plant Ecology and Diversity, 2012, 5, 415-425.	2.4	27
88	Megacycles of atmospheric carbon dioxide concentration correlate with fossil plant genome size. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 556-564.	4.0	39
89	Chromosome studies in Orchidaceae: karyotype divergence in Neotropical genera in subtribe Maxillariinae. Botanical Journal of the Linnean Society, 2012, 170, 29-39.	1.6	20
90	Molecular phylogenetics of Paphiopedilum (Cypripedioideae; Orchidaceae) based on nuclear ribosomal ITS and plastid sequences. Botanical Journal of the Linnean Society, 2012, 170, 176-196.	1.6	21

#	Article	IF	CITATIONS
91	Speciation and evolution in the Gagea reticulata species complex (Tulipeae; Liliaceae). Molecular Phylogenetics and Evolution, 2012, 62, 624-639.	2.7	20
92	Physiological framework for adaptation of stomata to CO ₂ from glacial to future concentrations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 537-546.	4.0	108
93	Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist, 2012, 194, 629-646.	7.3	158
94	Chromosome and genome size variation in <i>Luzula</i> (Juncaceae), a genus with holocentric chromosomes. Botanical Journal of the Linnean Society, 2012, 170, 529-541.	1.6	33
95	Plant Genome Diversity Volume 1. , 2012, , .		15
96	Exploring giant plant genomes with next-generation sequencing technology. Chromosome Research, 2011, 19, 939-953.	2.2	56
97	Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Annals of Botany, 2011, 107, 255-268.	2.9	78
98	Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany, 2011, 107, 467-590.	2.9	283
99	The quest for suitable reference standards in genome size research. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2010, 77A, 717-720.	1.5	40
100	A ROLE FOR NONADAPTIVE PROCESSES IN PLANT GENOME SIZE EVOLUTION?. Evolution; International Journal of Organic Evolution, 2010, 64, 2097-109.	2.3	79
101	Genome Size Dynamics and Evolution in Monocots. Journal of Botany, 2010, 2010, 1-18.	1.2	66
102	On the Tempo of Genome Size Evolution in Angiosperms. Journal of Botany, 2010, 2010, 1-8.	1.2	24
103	Flow cytometry and GISH reveal mixed ploidy populations and Spartina nonaploids with genomes of S. alterniflora and S. maritima origin. Annals of Botany, 2010, 105, 527-533.	2.9	38
104	Genome Size. Journal of Botany, 2010, 2010, 1-4.	1.2	14
105	Chromosome diversity and evolution in Liliaceae. Annals of Botany, 2009, 103, 459-475.	2.9	176
106	Genome size diversity in orchids: consequences and evolution. Annals of Botany, 2009, 104, 469-481.	2.9	156
107	Plant genomes. Genome dynamics vol. 4. Annals of Botany, 2009, 104, viii-viii.	2.9	0
108	Genome size as a predictor of guard cell length in <i>Arabidopsis thaliana </i> is independent of environmental conditions. New Phytologist, 2009, 181, 311-314.	7.3	48

#	Article	IF	CITATIONS
109	Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends in Ecology and Evolution, 2009, 24, 572-582.	8.7	83
110	Wild and agronomically important <i>Agave</i> species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy. Botanical Journal of the Linnean Society, 2008, 158, 215-222.	1.6	44
111	Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist, 2008, 179, 975-986.	7.3	436
112	Natural polyploidy in <i>Vanilla planifolia</i> (Orchidaceae). Genome, 2008, 51, 816-826.	2.0	60
113	The Dynamic Ups and Downs of Genome Size Evolution in Brassicaceae. Molecular Biology and Evolution, 2008, 26, 85-98.	8.9	158
114	Genomic Plasticity and the Diversity of Polyploid Plants. Science, 2008, 320, 481-483.	12.6	755
115	Plant Genome Horizons: Michael Bennett's Contribution to Genome Research. Annals of Botany, 2008, 101, 737-746.	2.9	5
116	The Ups and Downs of Genome Size Evolution in Polyploid Species of Nicotiana (Solanaceae). Annals of Botany, 2008, 101, 805-814.	2.9	294
117	Eukaryotic genome size databases. Nucleic Acids Research, 2007, 35, D332-D338.	14.5	371
118	Genome Size Evolution in Relation to Leaf Strategy and Metabolic Rates Revisited. Annals of Botany, 2007, 99, 495-505.	2.9	65
119	Genome sizes through the ages. Heredity, 2007, 99, 121-122.	2.6	20
120	Punctuated genome size evolution in Liliaceae. Journal of Evolutionary Biology, 2007, 20, 2296-2308.	1.7	82
121	Correlated evolution of genome size and seed mass. New Phytologist, 2007, 173, 422-437.	7.3	189
122	First Nuclear DNA Amounts in more than 300 Angiosperms. Annals of Botany, 2005, 96, 229-244.	2.9	217
123	Evolution of DNA Amounts Across Land Plants (Embryophyta). Annals of Botany, 2005, 95, 207-217.	2.9	171
124	Genome Size Evolution in Plants. , 2005, , 89-162.		113
125	Nuclear DNA Amounts in Angiosperms: Progress, Problems and Prospects. Annals of Botany, 2005, 95, 45-90.	2.9	346
126	The Effects of Nuclear DNA Content (C-value) on the Quality and Utility of AFLP Fingerprints. Annals of Botany, 2005, 95, 237-246.	2.9	76

#	Article	IF	CITATIONS
127	Plant Genome Size Research: A Field In Focus. Annals of Botany, 2005, 95, 1-6.	2.9	137
128	Molecular cytogenetic analysis of recently evolved <i>Tragopogon</i> (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. American Journal of Botany, 2004, 91, 1022-1035.	1.7	99
129	Molecular and cytological examination of <i>Calopogon</i> (Orchidaceae, Epidendroideae): circumscription, phylogeny, polyploidy, and possible hybrid speciation. American Journal of Botany, 2004, 91, 707-723.	1.7	42
130	One or more species in the arctic grass genus <i>Dupontia</i> ? – a contribution to the Panarctic Flora project. Taxon, 2004, 53, 365-382.	0.7	35
131	Genomic relationships among diploid and hexaploid species of Andropogon (Poaceae). Genome, 2004, 47, 1220-1224.	2.0	9
132	The absence of <i>Arabidopsis</i> â€ŧype telomeres in <i>Cestrum</i> and closely related genera <i>Vestia</i> and <i>Sessea</i> (Solanaceae): first evidence from eudicots. Plant Journal, 2003, 34, 283-291.	5.7	106
133	Genome organization in diploid hybrid species of Argyranthemum (Asteraceae) in the Canary Islands. Botanical Journal of the Linnean Society, 2003, 141, 491-501.	1.6	21
134	Comparisons with Caenorhabditis (100 Mb) and Drosophila (175 Mb) Using Flow Cytometry Show Genome Size in Arabidopsis to be 157 Mb and thus 25 % Larger than the Arabidopsis Genome Initiative Estimate of 125 Mb. Annals of Botany, 2003, 91, 547-557.	2.9	363
135	Evolution of genome size in the angiosperms. American Journal of Botany, 2003, 90, 1596-1603.	1.7	231
136	Nuclear DNA C-values in 30 Species Double the Familial Representation in Pteridophytes. Annals of Botany, 2002, 90, 209-217.	2.9	151
137	The use of dna sequencing (ITS and <i>trnLâ€F</i>), AFLP, and fluorescent in situ hybridization to study allopolyploid <i>Miscanthus</i> (Poaceae). American Journal of Botany, 2002, 89, 279-286.	1.7	207
138	DNA amounts for five pteridophyte species fill phylogenetic gaps in C-value data. Botanical Journal of the Linnean Society, 2002, 140, 169-173.	1.6	40
139	DNA C-values in seven families fill phylogenetic gaps in the basal angiosperms. Botanical Journal of the Linnean Society, 2002, 140, 175-179.	1.6	26
140	New Insights into Patterns of Nuclear Genome Size Evolution in Plants. Current Genomics, 2002, 3, 551-562.	1.6	7
141	Nuclear DNA Amounts in Pteridophytes. Annals of Botany, 2001, 87, 335-345.	2.9	32
142	Nuclear DNA C-values Complete Familial Representation in Gymnosperms. Annals of Botany, 2001, 88, 843-849.	2.9	54
143	Loss and recovery of <i>Arabidopsis</i> –type telomere repeat sequences 5′–(TTTACGG) <i>_n</i> –3′ in the evolution of a major radiation of flowering plants. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1541-1546.	2.6	77
144	Aloe L - a second plant family without (TTTAGGG) n telomeres. Chromosoma, 2000, 109, 201-205	22	54

#	Article	IF	CITATIONS
145	Genomic Origin and Organization of the Hybrid Poa jemtlandica(Poaceae) Verified by Genomic In Situ Hybridization and Chloroplast DNA Sequences. Annals of Botany, 2000, 85, 439-445.	2.9	33
146	Nuclear DNA Amounts in Angiosperms and their Modern Uses—807 New Estimates. Annals of Botany, 2000, 86, 859-909.	2.9	329
147	Ribosomal DNA evolution and phylogeny in <i>Aloe</i> (Asphodelaceae). American Journal of Botany, 2000, 87, 1578-1583.	1.7	95
148	Genomic characterisation and the detection of raspberry chromatin in polyploid Rubus. Theoretical and Applied Genetics, 1998, 97, 1027-1033.	3.6	60
149	Phylogenetic Analysis of DNA C-values provides Evidence for a Small Ancestral Genome Size in Flowering Plants. Annals of Botany, 1998, 82, 85-94.	2.9	252
150	DNA Amounts in Two Samples of Angiosperm Weeds. Annals of Botany, 1998, 82, 121-134.	2.9	135
151	Genome size and karyotype evolution in the slipper orchids (Cypripedioideae: Orchidaceae). American Journal of Botany, 1998, 85, 681-687.	1.7	63
152	THE APPLICATION OF GENOME â€Â~PAINTING' IN POLYPLOID RUBUS. Acta Horticulturae, 1998, , 367	-3022	0
153	Molecular cytogenetic studies in rubber, <i>Hevea brasiliensis</i> Muell. Arg. (Euphorbiaceae). Genome, 1998, 41, 464-467.	2.0	3
154	Nuclear DNA Amounts in Angiosperms—583 New Estimates. Annals of Botany, 1997, 80, 169-196.	2.9	151
155	Polyploidy in angiosperms. Trends in Plant Science, 1997, 2, 470-476.	8.8	529
156	New insights into chromosome evolution in plants from molecular cytogenetics. , 1997, , 333-346.		6
157	Chromosome identification and mapping in the grassZingeria biebersteiniana (2n=4) using fluorochromes. Chromosome Research, 1995, 3, 101-108.	2.2	36
158	Nuclear DNA Amounts in Angiosperms. Annals of Botany, 1995, 76, 113-176.	2.9	562
159	Detection of Digoxigenin-Labeled DNA Probes Hybridized to Plant Chromosomes In Situ. , 1994, 28, 177-186.		11
160	The use of fluorochromes in the cytogenetics of the small-grained cereals (Triticeae). The Histochemical Journal, 1994, 26, 471-479.	0.6	12
161	The distribution of RFLP markers on chromosome 2(2H) of barley in relation to the physical and genetic location of 5S rDNA. Theoretical and Applied Genetics, 1993, 87, 177-183.	3.6	42
162	Molecular cytogenetic analysis of repeated sequences in a long term wheat suspension culture. Plant Cell, Tissue and Organ Culture, 1993, 33, 287-296.	2.3	30

#	Article	IF	CITATIONS
163	Key Features of Cereal Genome Organization as Revealed by the Use of Cytosine Methylation-Sensitive Restriction Endonucleases. Genomics, 1993, 15, 472-482.	2.9	84
164	Physical mapping of four sites of 5S rDNA sequences and one site of the α-amylase-2 gene in barley (<i>Hordeum vulgare</i>). Genome, 1993, 36, 517-523.	2.0	163
165	Physical mapping of the 18S–5.8S–26S rRNA genes in barley by <i>in situ</i> hybridization. Genome, 1992, 35, 1013-1018.	2.0	192
166	Reprobing of DNA: DNA in situ hybridization preparations. Trends in Genetics, 1992, 8, 372-373.	6.7	90
167	Physical mapping of plant DNA sequences by simultaneous <i>in situ</i> hybridization of two differently labelled fluorescent probes. Genome, 1991, 34, 329-333.	2.0	98
168	Genome downsizing in polyploid plants. Biological Journal of the Linnean Society, 0, 82, 651-663.	1.6	579
169	Genome size in Polystachya (Orchidaceae) and its relationships to epidermal characters. Botanical Journal of the Linnean Society, 0, 163, 223-233.	1.6	16
170	The largest eukaryotic genome of them all?. Botanical Journal of the Linnean Society, 0, 164, 10-15.	1.6	311
171	Polyploidy in Cupressaceae: Discovery of a new naturally occurring tetraploid, Xanthocyparis vietnamensis. Journal of Systematics and Evolution, O, , .	3.1	5
172	Prioritising crop wild relatives to enhance agricultural resilience in sub‣aharan Africa under climate change. Plants People Planet, 0, , .	3.3	14
173	Revised Species Delimitation in the Giant Water Lily Genus Victoria (Nymphaeaceae) Confirms a New Species and Has Implications for Its Conservation. Frontiers in Plant Science, 0, 13, .	3.6	9