Ilia J Leitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4233391/publications.pdf

Version: 2024-02-01

173 papers	15,381 citations		61 h-index	2	110 g-index
		l			
184 all docs	184 docs citations		184 times ranked		10951 citing authors

#	Article	IF	CITATIONS
1	Genomic Plasticity and the Diversity of Polyploid Plants. Science, 2008, 320, 481-483.	12.6	755
2	Genome downsizing in polyploid plants. Biological Journal of the Linnean Society, 0, 82, 651-663.	1.6	579
3	Nuclear DNA Amounts in Angiosperms. Annals of Botany, 1995, 76, 113-176.	2.9	562
4	Polyploidy in angiosperms. Trends in Plant Science, 1997, 2, 470-476.	8.8	529
5	Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist, 2008, 179, 975-986.	7. 3	436
6	Eukaryotic genome size databases. Nucleic Acids Research, 2007, 35, D332-D338.	14.5	371
7	A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering. Systematic Biology, 2019, 68, 594-606.	5.6	371
8	Comparisons with Caenorhabditis (100 Mb) and Drosophila (175 Mb) Using Flow Cytometry Show Genome Size in Arabidopsis to be 157 Mb and thus 25 % Larger than the Arabidopsis Genome Initiative Estimate of 125 Mb. Annals of Botany, 2003, 91, 547-557.	2.9	363
9	Nuclear DNA Amounts in Angiosperms: Progress, Problems and Prospects. Annals of Botany, 2005, 95, 45-90.	2.9	346
10	Nuclear DNA Amounts in Angiosperms and their Modern Uses—807 New Estimates. Annals of Botany, 2000, 86, 859-909.	2.9	329
11	The largest eukaryotic genome of them all?. Botanical Journal of the Linnean Society, 0, 164, 10-15.	1.6	311
12	The Ups and Downs of Genome Size Evolution in Polyploid Species of Nicotiana (Solanaceae). Annals of Botany, 2008, 101, 805-814.	2.9	294
13	Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany, 2011, 107, 467-590.	2.9	283
14	Ecological and evolutionary significance of genomic GC content diversity in monocots. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4096-102.	7.1	260
15	Phylogenetic Analysis of DNA C-values provides Evidence for a Small Ancestral Genome Size in Flowering Plants. Annals of Botany, 1998, 82, 85-94.	2.9	252
16	Genome Size Diversity and Its Impact on the Evolution of Land Plants. Genes, 2018, 9, 88.	2.4	244
17	Evolution of genome size in the angiosperms. American Journal of Botany, 2003, 90, 1596-1603.	1.7	231
18	First Nuclear DNA Amounts in more than 300 Angiosperms. Annals of Botany, 2005, 96, 229-244.	2.9	217

#	Article	IF	Citations
19	The use of dna sequencing (ITS and <i>trnLâ€F</i>), AFLP, and fluorescent in situ hybridization to study allopolyploid <i>Miscanthus</i> (Poaceae). American Journal of Botany, 2002, 89, 279-286.	1.7	207
20	The Plant DNA Câ€values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist, 2020, 226, 301-305.	7.3	206
21	Physical mapping of the 18S–5.8S–26S rRNA genes in barley by <i>in situ</i>) hybridization. Genome, 1992, 35, 1013-1018.	2.0	192
22	Correlated evolution of genome size and seed mass. New Phytologist, 2007, 173, 422-437.	7.3	189
23	Chromosome diversity and evolution in Liliaceae. Annals of Botany, 2009, 103, 459-475.	2.9	176
24	In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS ONE, 2015, 10, e0143424.	2.5	172
25	Evolution of DNA Amounts Across Land Plants (Embryophyta). Annals of Botany, 2005, 95, 207-217.	2.9	171
26	Impacts of Nitrogen and Phosphorus: From Genomes to Natural Ecosystems and Agriculture. Frontiers in Ecology and Evolution, 2017, 5, .	2,2	168
27	Physical mapping of four sites of 5S rDNA sequences and one site of the α-amylase-2 gene in barley (<i>Hordeum vulgare</i>). Genome, 1993, 36, 517-523.	2.0	163
28	The Dynamic Ups and Downs of Genome Size Evolution in Brassicaceae. Molecular Biology and Evolution, 2008, 26, 85-98.	8.9	158
29	Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist, 2012, 194, 629-646.	7.3	158
30	Genome size diversity in orchids: consequences and evolution. Annals of Botany, 2009, 104, 469-481.	2.9	156
31	Nuclear DNA Amounts in Angiosperms—583 New Estimates. Annals of Botany, 1997, 80, 169-196.	2.9	151
32	Nuclear DNA C-values in 30 Species Double the Familial Representation in Pteridophytes. Annals of Botany, 2002, 90, 209-217.	2.9	151
33	A genome for gnetophytes and early evolution of seed plants. Nature Plants, 2018, 4, 82-89.	9.3	151
34	Plant Genome Size Research: A Field In Focus. Annals of Botany, 2005, 95, 1-6.	2.9	137
35	DNA Amounts in Two Samples of Angiosperm Weeds. Annals of Botany, 1998, 82, 121-134.	2.9	135
36	Genomic Repeat Abundances Contain Phylogenetic Signal. Systematic Biology, 2015, 64, 112-126.	5.6	126

#	Article	IF	CITATIONS
37	Factors Affecting Targeted Sequencing of 353 Nuclear Genes From Herbarium Specimens Spanning the Diversity of Angiosperms. Frontiers in Plant Science, 2019, 10, 1102.	3.6	124
38	Analysis of the giant genomes of <i><scp>F</scp>ritillaria</i> (<scp>L</scp> iliaceae) indicates that a lack of <scp>DNA</scp> removal characterizes extreme expansions in genome size. New Phytologist, 2015, 208, 596-607.	7.3	122
39	Genome size and ploidy influence angiosperm species' biomass under nitrogen and phosphorus limitation. New Phytologist, 2016, 210, 1195-1206.	7.3	117
40	Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytologist, 2016, 210, 1072-1082.	7.3	116
41	Genome Size Evolution in Plants. , 2005, , 89-162.		113
42	Physiological framework for adaptation of stomata to CO ₂ from glacial to future concentrations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 537-546.	4.0	108
43	A Comprehensive Phylogenomic Platform for Exploring the Angiosperm Tree of Life. Systematic Biology, 2022, 71, 301-319.	5.6	107
44	The absence of <i>Arabidopsis</i> â€type telomeres in <i>Cestrum</i> and closely related genera <i>Vestia</i> and <i>Sessea</i> (Solanaceae): first evidence from eudicots. Plant Journal, 2003, 34, 283-291.	5.7	106
45	Molecular cytogenetic analysis of recently evolved (i>Tragopogon (li>(Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. American Journal of Botany, 2004, 91, 1022-1035.	1.7	99
	1022-1053.		
46	Genome Size Diversity and Evolution in Land Plants. , 2013, , 307-322.		99
46		7.3	99
	Genome Size Diversity and Evolution in Land Plants. , 2013, , 307-322.	7.3	
47	Genome Size Diversity and Evolution in Land Plants., 2013, , 307-322. The hidden side of plant invasions: the role of genome size. New Phytologist, 2015, 205, 994-1007. Physical mapping of plant DNA sequences by simultaneous <i>i>in situ</i>		99
47	Genome Size Diversity and Evolution in Land Plants., 2013, , 307-322. The hidden side of plant invasions: the role of genome size. New Phytologist, 2015, 205, 994-1007. Physical mapping of plant DNA sequences by simultaneous <i>in situ</i> hybridization of two differently labelled fluorescent probes. Genome, 1991, 34, 329-333. Ribosomal DNA evolution and phylogeny in <i>Aloe</i> (Asphodelaceae). American Journal of Botany,	2.0	99
48	Genome Size Diversity and Evolution in Land Plants. , 2013, , 307-322. The hidden side of plant invasions: the role of genome size. New Phytologist, 2015, 205, 994-1007. Physical mapping of plant DNA sequences by simultaneous <i>i in situ</i> hybridization of two differently labelled fluorescent probes. Genome, 1991, 34, 329-333. Ribosomal DNA evolution and phylogeny in <i>Aloe</i> (Asphodelaceae). American Journal of Botany, 2000, 87, 1578-1583.	2.0	99 98 95
47 48 49 50	Genome Size Diversity and Evolution in Land Plants. , 2013, , 307-322. The hidden side of plant invasions: the role of genome size. New Phytologist, 2015, 205, 994-1007. Physical mapping of plant DNA sequences by simultaneous <i>in situ</i> hybridization of two differently labelled fluorescent probes. Genome, 1991, 34, 329-333. Ribosomal DNA evolution and phylogeny in <i>Aloe</i> (Asphodelaceae). American Journal of Botany, 2000, 87, 1578-1583. Reprobing of DNA: DNA in situ hybridization preparations. Trends in Genetics, 1992, 8, 372-373. Repeat-sequence turnover shifts fundamentally in species with large genomes. Nature Plants, 2020, 6,	2.0 1.7 6.7	99 98 95 90
47 48 49 50	Genome Size Diversity and Evolution in Land Plants. , 2013, , 307-322. The hidden side of plant invasions: the role of genome size. New Phytologist, 2015, 205, 994-1007. Physical mapping of plant DNA sequences by simultaneous <i>i in situ </i> hybridization of two differently labelled fluorescent probes. Genome, 1991, 34, 329-333. Ribosomal DNA evolution and phylogeny in <i>Aloe </i> (Asphodelaceae). American Journal of Botany, 2000, 87, 1578-1583. Reprobing of DNA: DNA in situ hybridization preparations. Trends in Genetics, 1992, 8, 372-373. Repeat-sequence turnover shifts fundamentally in species with large genomes. Nature Plants, 2020, 6, 1325-1329.	2.0 1.7 6.7 9.3	99 98 95 90 87

#	Article	IF	CITATIONS
55	Functional and evolutionary genomic inferences in <i>Populus</i> through genome and population sequencing of American and European aspen. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10970-E10978.	7.1	84
56	Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends in Ecology and Evolution, 2009, 24, 572-582.	8.7	83
57	A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family <scp>M</scp> elanthiaceae. New Phytologist, 2014, 201, 1484-1497.	7.3	83
58	Punctuated genome size evolution in Liliaceae. Journal of Evolutionary Biology, 2007, 20, 2296-2308.	1.7	82
59	A ROLE FOR NONADAPTIVE PROCESSES IN PLANT GENOME SIZE EVOLUTION?. Evolution; International Journal of Organic Evolution, 2010, 64, 2097-109.	2.3	79
60	Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Annals of Botany, 2011, 107, 255-268.	2.9	78
61	Loss and recovery of <i>Arabidopsis</i> –type telomere repeat sequences 5′–(TTTAGGG) <i>_n</i> ‰3′ in the evolution of a major radiation of flowering plants. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1541-1546.	2.6	77
62	The Effects of Nuclear DNA Content (C-value) on the Quality and Utility of AFLP Fingerprints. Annals of Botany, 2005, 95, 237-246.	2.9	76
63	Genome Size and the Phenotype. , 2013, , 323-344.		76
64	Evolutionary relationships in the medicinally important genus Fritillaria L. (Liliaceae). Molecular Phylogenetics and Evolution, 2014, 80, 11-19.	2.7	75
65	Genome-wide association mapping of date palm fruit traits. Nature Communications, 2019, 10, 4680.	12.8	75
66	Genome size diversity in angiosperms and its influence on gene space. Current Opinion in Genetics and Development, 2015, 35, 73-78.	3.3	73
67	Genome Size Dynamics and Evolution in Monocots. Journal of Botany, 2010, 2010, 1-18.	1.2	66
68	The Application of Flow Cytometry for Estimating Genome Size and Ploidy Level in Plants. Methods in Molecular Biology, 2014, 1115, 279-307.	0.9	66
69	Genome Size Evolution in Relation to Leaf Strategy and Metabolic Rates Revisited. Annals of Botany, 2007, 99, 495-505.	2.9	65
70	Genome size and karyotype evolution in the slipper orchids (Cypripedioideae: Orchidaceae). American Journal of Botany, 1998, 85, 681-687.	1.7	63
71	Genomic characterisation and the detection of raspberry chromatin in polyploid Rubus. Theoretical and Applied Genetics, 1998, 97, 1027-1033.	3.6	60
72	Natural polyploidy in <i>Vanilla planifolia</i> (Orchidaceae). Genome, 2008, 51, 816-826.	2.0	60

#	Article	IF	CITATIONS
73	Exploring giant plant genomes with next-generation sequencing technology. Chromosome Research, 2011, 19, 939-953.	2.2	56
74	Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma, 2016, 125, 683-699.	2.2	56
75	Aloe L a second plant family without (TTTAGGG) n telomeres. Chromosoma, 2000, 109, 201-205.	2.2	54
76	Nuclear DNA C-values Complete Familial Representation in Gymnosperms. Annals of Botany, 2001, 88, 843-849.	2.9	54
77	A Target Capture-Based Method to Estimate Ploidy From Herbarium Specimens. Frontiers in Plant Science, 2019, 10, 937.	3.6	53
78	Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait. Molecular Ecology, 2016, 25, 6107-6123.	3.9	51
79	The Welwitschia genome reveals aÂunique biology underpinning extreme longevity in deserts. Nature Communications, 2021, 12, 4247.	12.8	51
80	A customized nuclear target enrichment approach for developing a phylogenomic baseline for <i>Dioscorea</i> yams (Dioscoreaceae). Applications in Plant Sciences, 2019, 7, e11254.	2.1	49
81	Genome size as a predictor of guard cell length in <i>Arabidopsis thaliana </i> is independent of environmental conditions. New Phytologist, 2009, 181, 311-314.	7.3	48
82	Genome downsizing after polyploidy: mechanisms, rates and selection pressures. Plant Journal, 2021, 107, 1003-1015.	5.7	48
83	Recent updates and developments to plant genome size databases. Nucleic Acids Research, 2014, 42, D1159-D1166.	14.5	47
84	Angiosperms Are Unique among Land Plant Lineages in the Occurrence of Key Genes in the RNA-Directed DNA Methylation (RdDM) Pathway. Genome Biology and Evolution, 2015, 7, 2648-2662.	2.5	46
85	Wild and agronomically important <i>Agave</i> i>species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy. Botanical Journal of the Linnean Society, 2008, 158, 215-222.	1.6	44
86	Exploring environmental selection on genome size in angiosperms. Trends in Plant Science, 2021, 26, 1039-1049.	8.8	44
87	The distribution of RFLP markers on chromosome 2(2H) of barley in relation to the physical and genetic location of 5S rDNA. Theoretical and Applied Genetics, 1993, 87, 177-183.	3.6	42
88	Molecular and cytological examination of i> Calopogon io (Orchidaceae, Epidendroideae): circumscription, phylogeny, polyploidy, and possible hybrid speciation. American Journal of Botany, 2004, 91, 707-723.	1.7	42
89	Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies). Genome, 2013, 56, 437-449.	2.0	41
90	The Application of Flow Cytometry for Estimating Genome Size, Ploidy Level Endopolyploidy, and Reproductive Modes in Plants. Methods in Molecular Biology, 2021, 2222, 325-361.	0.9	41

#	Article	IF	Citations
91	DNA amounts for five pteridophyte species fill phylogenetic gaps in C-value data. Botanical Journal of the Linnean Society, 2002, 140, 169-173.	1.6	40
92	The quest for suitable reference standards in genome size research. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2010, 77A, 717-720.	1.5	40
93	Megacycles of atmospheric carbon dioxide concentration correlate with fossil plant genome size. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 556-564.	4.0	39
94	Reconstructing relative genome size of vascular plants through geological time. New Phytologist, 2014, 201, 636-644.	7.3	39
95	Flow cytometry and GISH reveal mixed ploidy populations and Spartina nonaploids with genomes of S. alterniflora and S. maritima origin. Annals of Botany, 2010, 105, 527-533.	2.9	38
96	A roadmap for global synthesis of the plant tree of life. American Journal of Botany, 2018, 105, 614-622.	1.7	38
97	Chromosome identification and mapping in the grassZingeria biebersteiniana (2n=4) using fluorochromes. Chromosome Research, 1995, 3, 101-108.	2.2	36
98	One or more species in the arctic grass genus <i>Dupontia</i> ? – a contribution to the Panarctic Flora project. Taxon, 2004, 53, 365-382.	0.7	35
99	Hundreds of nuclear and plastid loci yield novel insights into orchid relationships. American Journal of Botany, 2021, 108, 1166-1180.	1.7	35
100	Applicationâ€based guidelines for best practices in plant flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 749-781.	1.5	34
101	Genomic Origin and Organization of the Hybrid Poa jemtlandica(Poaceae) Verified by Genomic In Situ Hybridization and Chloroplast DNA Sequences. Annals of Botany, 2000, 85, 439-445.	2.9	33
102	Chromosome and genome size variation in <i>Luzula</i> (juncaceae), a genus with holocentric chromosomes. Botanical Journal of the Linnean Society, 2012, 170, 529-541.	1.6	33
103	Polyploidy in the Conifer Genus Juniperus: An Unexpectedly High Rate. Frontiers in Plant Science, 2019, 10, 676.	3.6	33
104	Automated video monitoring of insect pollinators in the field. Emerging Topics in Life Sciences, 2020, 4, 87-97.	2.6	33
105	Nuclear DNA Amounts in Pteridophytes. Annals of Botany, 2001, 87, 335-345.	2.9	32
106	Endogenous pararetrovirus sequences associated with 24Ânt small <scp>RNA</scp> s at the centromeres of <i>Fritillaria imperialis </i> scp>L. (<scp>L</scp> iliaceae), a species with a giant genome. Plant Journal, 2014, 80, 823-833.	5.7	32
107	Molecular cytogenetic analysis of repeated sequences in a long term wheat suspension culture. Plant Cell, Tissue and Organ Culture, 1993, 33, 287-296.	2.3	30
108	Do tropical plants have smaller genomes? Correlation between genome size and climatic variables in the Caesalpinia Group (Caesalpinioideae, Leguminosae). Perspectives in Plant Ecology, Evolution and Systematics, 2019, 38, 13-23.	2.7	30

#	Article	IF	CITATIONS
109	Why size really matters when sequencing plant genomes. Plant Ecology and Diversity, 2012, 5, 415-425.	2.4	27
110	Genome size variation in Orchidaceae subfamily Apostasioideae: filling the phylogenetic gap. Botanical Journal of the Linnean Society, 2013, 172, 95-105.	1.6	27
111	Genome size expansion and the relationship between nuclear DNA content and spore size in the Asplenium monanthes fern complex (Aspleniaceae). BMC Plant Biology, 2013, 13, 219.	3.6	27
112	DNA C-values in seven families fill phylogenetic gaps in the basal angiosperms. Botanical Journal of the Linnean Society, 2002, 140, 175-179.	1.6	26
113	Plant Genome Diversity Volume 2., 2013, , .		25
114	Are the genomes of royal ferns really frozen in time? Evidence for coinciding genome stability and limited evolvability in the royal ferns. New Phytologist, 2015, 207, 10-13.	7.3	25
115	On the Tempo of Genome Size Evolution in Angiosperms. Journal of Botany, 2010, 2010, 1-8.	1.2	24
116	Genomic gigantism in the whisk-fern family (Psilotaceae): Tmesipteris obliqua challenges record holder Paris japonica. Botanical Journal of the Linnean Society, 2017, 183, 509-514.	1.6	24
117	Genome size dynamics in tribe Gilliesieae (Amaryllidaceae, subfamily Allioideae) in the context of polyploidy and unusual incidence of Robertsonian translocations. Botanical Journal of the Linnean Society, 2017, 184, 16-31.	1.6	24
118	Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms. Annals of Botany, 2019, 123, 767-781.	2.9	23
119	Crop wild phylorelatives (CWPs): phylogenetic distance, cytogenetic compatibility and breeding system data enable estimation of crop wild relative gene pool classification. Botanical Journal of the Linnean Society, 2021, 195, 1-33.	1.6	23
120	The nature of intraspecific and interspecific genome size variation in taxonomically complex eyebrights. Annals of Botany, 2021, 128, 639-651.	2.9	22
121	Genome organization in diploid hybrid species of Argyranthemum (Asteraceae) in the Canary Islands. Botanical Journal of the Linnean Society, 2003, 141, 491-501.	1.6	21
122	Molecular phylogenetics of Paphiopedilum (Cypripedioideae; Orchidaceae) based on nuclear ribosomal ITS and plastid sequences. Botanical Journal of the Linnean Society, 2012, 170, 176-196.	1.6	21
123	Genome sizes through the ages. Heredity, 2007, 99, 121-122.	2.6	20
124	Chromosome studies in Orchidaceae: karyotype divergence in Neotropical genera in subtribe Maxillariinae. Botanical Journal of the Linnean Society, 2012, 170, 29-39.	1.6	20
125	Speciation and evolution in the Gagea reticulata species complex (Tulipeae; Liliaceae). Molecular Phylogenetics and Evolution, 2012, 62, 624-639.	2.7	20
126	Polyploidy in gymnosperms – Insights into the genomic and evolutionary consequences of polyploidy in Ephedra. Molecular Phylogenetics and Evolution, 2020, 147, 106786.	2.7	20

#	Article	IF	CITATIONS
127	Persistence, dispersal and genetic evolution of recently formed Spartina homoploid hybrids and allopolyploids in Southern England. Biological Invasions, 2016, 18, 2137-2151.	2.4	19
128	Lineageâ€specific vs. universal: A comparison of the Compositae1061 and Angiosperms353 enrichment panels in the sunflower family. Applications in Plant Sciences, 2021, 9, .	2.1	19
129	Contrasted histories of organelle and nuclear genomes underlying physiological diversification in a grass species. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201960.	2.6	18
130	Evolutionary and functional potential of ploidy increase within individual plants: somatic ploidy mapping of the complex labellum of sexually deceptive bee orchids. Annals of Botany, 2018, 122, 133-150.	2.9	17
131	Evolutionary convergence or homology? Comparative cytogenomics of Caesalpinia group species (Leguminosae) reveals diversification in the pericentromeric heterochromatic composition. Planta, 2019, 250, 2173-2186.	3.2	17
132	Selecting for useful properties of plants and fungi – Novel approaches, opportunities, and challenges. Plants People Planet, 2020, 2, 409-420.	3.3	17
133	Genome size in Polystachya (Orchidaceae) and its relationships to epidermal characters. Botanical Journal of the Linnean Society, 0, 163, 223-233.	1.6	16
134	Polyploidy does not control all: Lineageâ€specific average chromosome length constrains genome size evolution in ferns. Journal of Systematics and Evolution, 2019, 57, 418-430.	3.1	16
135	Interactions between plant genome size, nutrients and herbivory by rabbits, molluscs and insects on a temperate grassland. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182619.	2.6	16
136	Best practices in plant cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 311-317.	1.5	16
137	Plant Genome Diversity Volume 1., 2012, , .		15
138	Satellite DNA in Paphiopedilum subgenus Parvisepalum as revealed by high-throughput sequencing and fluorescent in situ hybridization. BMC Genomics, 2018, 19, 578.	2.8	15
139	Molecular Clocks and Archeogenomics of a Late Period Egyptian Date Palm Leaf Reveal Introgression from Wild Relatives and Add Timestamps on the Domestication. Molecular Biology and Evolution, 2021, 38, 4475-4492.	8.9	14
140	Evolution of genome space occupation in ferns: linking genome diversity and species richness. Annals of Botany, 2023, 131, 59-70.	2.9	14
141	Genome Size. Journal of Botany, 2010, 2010, 1-4.	1.2	14
142	Prioritising crop wild relatives to enhance agricultural resilience in subâ€Saharan Africa under climate change. Plants People Planet, 0, , .	3.3	14
143	How diverse is heterochromatin in the Caesalpinia group? Cytogenomic characterization of Erythrostemon hughesii Gagnon & Erythrostemon hughesii Gagnon & 252, 49.	3.2	13
144	The use of fluorochromes in the cytogenetics of the small-grained cereals (Triticeae). The Histochemical Journal, 1994, 26, 471-479.	0.6	12

#	Article	IF	CITATIONS
145	Impact of genomic diversity in river ecosystems. Trends in Plant Science, 2014, 19, 361-366.	8.8	12
146	Cytogenetic insights into an oceanic island radiation: The dramatic evolution of preâ€existing traits in ⟨i⟩Cheirolophus⟨ i⟩ (Asteraceae: Cardueae: Centaureinae). Taxon, 2017, 66, 146-157.	0.7	12
147	Low dispersal and ploidy differences in a grass maintain photosynthetic diversity despite gene flow and habitat overlap. Molecular Ecology, 2021, 30, 2116-2130.	3.9	12
148	Detection of Digoxigenin-Labeled DNA Probes Hybridized to Plant Chromosomes In Situ. , 1994, 28, 177-186.		11
149	The correlation of phylogenetics, elevation and ploidy on the incidence of apomixis in Asteraceae in the European Alps. Botanical Journal of the Linnean Society, 2020, 194, 410-422.	1.6	11
150	Genome Size Doubling Arises From the Differential Repetitive DNA Dynamics in the Genus Heloniopsis (Melanthiaceae). Frontiers in Genetics, 2021, 12, 726211.	2.3	11
151	The ecology of palm genomes: repeatâ€associated genome size expansion is constrained by aridity. New Phytologist, 2022, 236, 433-446.	7.3	10
152	Genomic relationships among diploid and hexaploid species of Andropogon (Poaceae). Genome, 2004, 47, 1220-1224.	2.0	9
153	Untapped resources for medical research. Science, 2020, 369, 781-782.	12.6	9
154	Evolutionary dynamics of transposable elements and satellite DNAs in polyploid Spartina species. Plant Science, 2021, 302, 110671.	3.6	9
155	Biogeography and genome size evolution of the oldest extant vascular plant genus, <i>Equisetum </i> (Equisetaceae). Annals of Botany, 2021, 127, 681-695.	2.9	9
156	Targeting Ascomycota genomes: what and how big?. Fungal Biology Reviews, 2021, 36, 52-59.	4.7	9
157	Revised Species Delimitation in the Giant Water Lily Genus Victoria (Nymphaeaceae) Confirms a New Species and Has Implications for Its Conservation. Frontiers in Plant Science, 0, 13, .	3.6	9
158	Revisiting the cytomolecular evolution of the Caesalpinia group (Leguminosae): a broad sampling reveals new correlations between cytogenetic and environmental variables. Plant Systematics and Evolution, 2020, 306, 1.	0.9	8
159	New Insights into Patterns of Nuclear Genome Size Evolution in Plants. Current Genomics, 2002, 3, 551-562.	1.6	7
160	Salix transect of Europe: variation in ploidy and genome size in willow-associated common nettle, Urtica dioica L. sens. lat., from Greece to arctic Norway. Biodiversity Data Journal, 2016, 4, e10003.	0.8	7
161	250 years of hybridization between two biennial herb species without speciation. AoB PLANTS, 2015, 7, plv081.	2.3	6
162	New insights into chromosome evolution in plants from molecular cytogenetics. , 1997, , 333-346.		6

#	Article	IF	CITATIONS
163	Genome Insights into Autopolyploid Evolution: A Case Study in Senecio doronicum (Asteraceae) from the Southern Alps. Plants, 2022, 11, 1235.	3.5	6
164	Plant Genome Horizons: Michael Bennett's Contribution to Genome Research. Annals of Botany, 2008, 101, 737-746.	2.9	5
165	Digests: Salamanders' slow slither into genomic gigantism*. Evolution; International Journal of Organic Evolution, 2016, 70, 2915-2916.	2.3	5
166	Polyploidy in Cupressaceae: Discovery of a new naturally occurring tetraploid, Xanthocyparis vietnamensis. Journal of Systematics and Evolution, 0, , .	3.1	5
167	Repetitive DNA Dynamics and Polyploidization in the Genus Nicotiana (Solanaceae). Compendium of Plant Genomes, 2020, , 85-99.	0.5	4
168	Molecular cytogenetic studies in rubber, <i>Hevea brasiliensis</i> Muell. Arg. (Euphorbiaceae). Genome, 1998, 41, 464-467.	2.0	3
169	A haploid pseudo-chromosome genome assembly for a keystone sagebrush species of western North American rangelands. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	3
170	Genome Size Evolution and Dynamics in Iris, with Special Focus on the Section Oncocyclus. Plants, 2020, 9, 1687.	3.5	2
171	Systematics and Evolution of the Genus Phoenix: Towards Understanding Date Palm Origins. Compendium of Plant Genomes, 2021, , 29-54.	0.5	2
172	THE APPLICATION OF GENOME â€Â~PAINTING' IN POLYPLOID RUBUS. Acta Horticulturae, 1998, , 367	7-3022	0
173	Plant genomes. Genome dynamics vol. 4. Annals of Botany, 2009, 104, viii-viii.	2.9	0