James G Tokuhisa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4231824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	De novo formation of an aggregation pheromone precursor by an isoprenyl diphosphate synthase-related terpene synthase in the harlequin bug. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8634-E8641.	7.1	43
2	Crystal Structure of Xanthomonas AvrRxo1-ORF1, a Type III Effector with a Polynucleotide Kinase Domain, and Its Interactor AvrRxo1-ORF2. Structure, 2015, 23, 1900-1909.	3.3	27
3	A Rootstock Provides Water Conservation for a Grafted Commercial Tomato (Solanum lycopersicum) Tj ETQq1 1 Parameters. PLoS ONE, 2014, 9, e115380.	0.784314 2.5	rgBT /Overlo 29
4	Allelic variation in genes contributing to glycoalkaloid biosynthesis in a diploid interspecific population of potato. Theoretical and Applied Genetics, 2014, 127, 391-405.	3.6	28
5	Formation of the Unusual Semivolatile Diterpene Rhizathalene by the <i>Arabidopsis</i> Class I Terpene Synthase TPS08 in the Root Stele Is Involved in Defense against Belowground Herbivory. Plant Cell, 2013, 25, 1108-1125.	6.6	123
6	Sequence Diversity in Coding Regions of Candidate Genes in the Glycoalkaloid Biosynthetic Pathway of Wild Potato Species. G3: Genes, Genomes, Genetics, 2013, 3, 1467-1479.	1.8	29
7	Properties of Î ² -thioglucoside hydrolases (TGG1 and TGG2) from leaves of Arabidopsis thaliana. Plant Science, 2012, 191-192, 82-92.	3.6	36
8	Induction of potato steroidal glycoalkaloid biosynthetic pathway by overexpression of cDNA encoding primary metabolism HMG-CoA reductase and squalene synthase. Planta, 2012, 235, 1341-1353.	3.2	50
9	Steroidal glycoalkaloids in Solanum chacoense. Phytochemistry, 2012, 75, 32-40.	2.9	32
10	Metabolite profiling of Arabidopsis seedlings in response to exogenous sinalbin and sulfur deficiency. Phytochemistry, 2011, 72, 1767-1778.	2.9	33
11	An aeroponic culture system for the study of root herbivory on Arabidopsis thaliana. Plant Methods, 2011, 7, 5.	4.3	22
12	Potato Steroidal Glycoalkaloids: Biosynthesis and Genetic Manipulation. Potato Research, 2009, 52, 1-15.	2.7	104
13	Two Arabidopsis Genes (IPMS1 and IPMS2) Encode Isopropylmalate Synthase, the Branchpoint Step in the Biosynthesis of Leucine. Plant Physiology, 2007, 143, 970-986.	4.8	88
14	MAM3 Catalyzes the Formation of All Aliphatic Glucosinolate Chain Lengths in Arabidopsis. Plant Physiology, 2007, 144, 60-71.	4.8	194
15	The Effect of Sulfur Nutrition on Plant Glucosinolate Content: Physiology and Molecular Mechanisms. Plant Biology, 2007, 9, 573-581.	3.8	260
16	Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry, 2006, 67, 2450-2462.	2.9	248
17	Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynthesis Research, 2005, 86, 491-508.	2.9	111
18	Elucidation of Gene-to-Gene and Metabolite-to-Gene Networks inArabidopsis by Integration of Metabolomics and Transcriptomics*. Journal of Biological Chemistry, 2005, 280, 25590-25595.	3.4	453

JAMES G TOKUHISA

#	Article	IF	CITATIONS
19	Chapter two The biochemical and molecular origins of aliphatic glucosinolate diversity in Arabidopsis thaliana. Recent Advances in Phytochemistry, 2004, 38, 19-38.	0.5	1
20	Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 2003, 62, 471-481.	2.9	814
21	Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry, 2002, 59, 663-671.	2.9	226
22	Genetic Engineering of Plant Chilling Tolerance. , 1999, 21, 79-93.		14
23	Chloroplast Development at Low Temperatures Requires a Homolog of DIM1, a Yeast Gene Encoding the 18S rRNA Dimethylase. Plant Cell, 1998, 10, 699-711.	6.6	71
24	Chloroplast Development at Low Temperatures Requires a Homolog of DIM1, a Yeast Gene Encoding the 18S rRNA Dimethylase. Plant Cell, 1998, 10, 699.	6.6	7
25	Mutational analysis of chilling tolerance in plants. Plant, Cell and Environment, 1997, 20, 1391-1400.	5.7	10
26	Does the ocs-element occur as a functional component of the promoters of plant genes?. Plant Journal, 1993, 4, 433-443.	5.7	72
27	A DNA-Binding Protein Factor Recognizes Two Binding Domains within the Octopine Synthase Enhancer Element. Plant Cell, 1990, 2, 215.	6.6	0
28	OCSBF-1, a maize ocs enhancer binding factor: isolation and expression during development Plant Cell, 1990, 2, 891-903.	6.6	136
29	PHYTOCHROME IN GREEN-TISSUE: PARTIAL PURIFICATION and CHARACTERIZATION OF THE 118-KILODALTON PHYTOCHROME SPECIES FROM LIGHT-GROWN Avena sativa L.*. Photochemistry and Photobiology, 1989, 50, 143-152.	2.5	30
30	Saturation mutagenesis of the octopine synthase enhancer: correlation of mutant phenotypes with binding of a nuclear protein factor Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 3733-3737.	7.1	66
31	The levels of two distinct species of phytochrome are regulated differently during germination in Avena sativa L Planta, 1987, 172, 371-377.	3.2	45
32	Phytochrome in green tissue: Spectral and immunochemical evidence for two distinct molecular species of phytochrome in light-grown Avena sativa L. Planta, 1985, 164, 321-332.	3.2	180