Guodong Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4231213/publications.pdf

Version: 2024-02-01

		361296	377752
34	1,212	20	34
papers	citations	h-index	g-index
25	25	25	1 41 5
35	35	35	1415
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Zinc-Catalyzed Highly Isoselective Ring Opening Polymerization of <i>rac</i> -Lactide. ACS Macro Letters, 2014, 3, 689-692.	2.3	163
2	Iron Porphyrin Catalyzed Nâ^'H Insertion Reactions with Ethyl Diazoacetate. Organometallics, 2007, 26, 3995-4002.	1.1	108
3	Mechanistic Insight into Hydrosilylation Reactions Catalyzed by High Valent Reâ‹®X (X = O, NAr, or N) Complexes:Â The Silane (SiH) Does Not Add across the Metalâ´'Ligand Multiple Bond. Journal of the American Chemical Society, 2007, 129, 5180-5187.	6.6	103
4	Catalytic Hydrosilylation of Carbonyl Compounds with Cationic Oxorhenium(V) Salen. Organometallics, 2006, 25, 4920-4923.	1.1	76
5	An Efficient Catalyst Based on Manganese Salen for Hydrosilylation of Carbonyl Compounds. Organometallics, 2013, 32, 5034-5037.	1.1	71
6	Catalytic epoxidation of methyl linoleate. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 477-480.	0.8	61
7	Oxo and Imido Complexes of Rhenium and Molybdenum in Catalytic Reductions. Current Organic Chemistry, 2008, 12, 1185-1198.	0.9	50
8	Chiral Amido-Oxazolinate Zinc Complexes for Asymmetric Alternating Copolymerization of CO ₂ and Cyclohexene Oxide. Organometallics, 2012, 31, 7394-7403.	1.1	50
9	Polymers from Bioderived Resources: Synthesis of Poly(silylether)s from Furan Derivatives Catalyzed by a Salen–Mn(V) Complex. ACS Sustainable Chemistry and Engineering, 2018, 6, 2491-2497.	3.2	45
10	Scope and Mechanistic Studies of Catalytic Hydrosilylation with a High-Valent Nitridoruthenium(VI). ACS Catalysis, 2013, 3, 678-684.	5 . 5	44
11	Ring-Opening Polymerization of <i>rac</i> -Lactide with Aluminum Chiral Anilido-Oxazolinate Complexes. Organometallics, 2014, 33, 2489-2495.	1.1	42
12	Oxidation of Triarylphosphines and Aryl Methyl Sulfides with Hydrogen Peroxide Catalyzed by Dioxovanadium(V) lon. Inorganic Chemistry, 2005, 44, 2465-2471.	1.9	39
13	Dehydrogenative coupling of alcohols and carboxylic acids with hydrosilanes catalyzed by a salen–Mn(<scp>v</scp>) complex. Catalysis Science and Technology, 2016, 6, 3886-3892.	2.1	35
14	Versatile Manganese Catalysis for the Synthesis of Poly(silylether)s from Diols and Dicarbonyls with Hydrosilanes. ACS Omega, 2017, 2, 582-591.	1.6	33
15	Cyclic and Linear Polyhydroxylbutyrates from Ring-Opening Polymerization of \hat{l}^2 -Butyrolactone with Amido-Oxazolinate Zinc Catalysts. Macromolecules, 2019, 52, 157-166.	2.2	28
16	Synthesis of Polycarbonates and Poly(ether carbonate)s Directly from Carbon Dioxide and Diols Promoted by a Cs ₂ CO ₃ /CH ₂ Cl ₂ System. ACS Omega, 2016, 1, 1049-1057.	1.6	27
17	Ringâ€Opening Copolymerization of Styrene Oxide and Cyclic Anhydrides by using Highly Effective Zinc Amido–Oxazolinate Catalysts. ChemCatChem, 2017, 9, 1343-1348.	1.8	25
18	Reductive Coupling Reactions of Carbonyl Compounds with a Low-Valent Titanium(II) Porphyrin Complex. Organometallics, 2004, 23, 4230-4235.	1.1	22

#	Article	IF	CITATIONS
19	Highly Selective Hydroboration of Carbonyls by a Manganese Catalyst: Insight into the Reaction Mechanism. Organometallics, 2020, 39, 3375-3383.	1.1	22
20	Cationic nitridoruthenium(VI) catalyzed hydrosilylation of ketones and aldehydes. Tetrahedron Letters, 2011, 52, 1670-1672.	0.7	20
21	Oxidation of Vanadium(III) by Hydrogen Peroxide and the Oxomonoperoxo Vanadium(V) Ion in Acidic Aqueous Solutions:Â A Kinetics and Simulation Study. Inorganic Chemistry, 2005, 44, 5514-5522.	1.9	18
22	Unexpected Formation of Chiral Pincer CNN Nickel Complexes with β-Diketiminato Type Ligands via C–H Activation: Synthesis, Properties, Structures, and Computational Studies. Inorganic Chemistry, 2013, 52, 1454-1465.	1.9	18
23	Synthesis and Characterization of Chiral Tetraaza Macrocyclic Nickel(II) and Palladium(II) Complexes. Inorganic Chemistry, 2003, 42, 873-877.	1.9	17
24	Renewable Isohexideâ€Based, Hydrolytically Degradable Poly(silyl ether)s with High Thermal Stability. ChemSusChem, 2018, 11, 2881-2888.	3.6	15
25	Synthesis of Chiral <i>C₂</i> -Symmetric Bimetallic Zinc Complexes of Amido-Oxazolinates and Their Application in Copolymerization of CO ₂ and Cyclohexene Oxide. ChemistrySelect, 2016, 1, 3175-3183.	0.7	13
26	Synthesis, Characterization, and Reactivity of Group 4 Metalloporphyrin Diolate Complexes. Organometallics, 2003, 22, 450-455.	1.1	12
27	Reaction of Tin Porphyrins with Vicinal Diols. Inorganic Chemistry, 2004, 43, 2379-2386.	1.9	12
28	Alcohol oxidation with dioxygen mediated by oxotitanium porphyrin and related transition metal complexes. Journal of Porphyrins and Phthalocyanines, 2005, 09, 206-213.	0.4	11
29	Modular Synthesis of Chiral \hat{l}^2 -Diketiminato-Type Ligands Containing 2-Oxazoline Moiety via Palladium-Catalyzed Amination. Synthesis, 2011, 2011, 2609-2618.	1.2	9
30	Kinetics of the Reaction of Chromium(VI) with Tris(1,10-phenanthroline)iron(II) lons in Acidic Solutions. Anion and Medium Effects: A Perchlorate versus Triflate. Inorganic Chemistry, 2006, 45, 1053-1058.	1.9	6
31	Effect of dihalides on the polymer linkages in the Cs2CO3-promoted polycondensation of 1 atm carbon dioxide and diols. Materials Today Communications, 2019 , 18 , $100-109$.	0.9	6
32	Zinc Amido-Oxazolinate Catalyzed Ring Opening Copolymerization and Terpolymerization of Maleic Anhydride and Epoxides. Molecules, 2020, 25, 4044.	1.7	6
33	Survey of several catalytic systems for the epoxidation of a biobased ester sucrose soyate. Catalysis Communications, 2018, 111, 31-35.	1.6	3
34	Star-shaped Poly(hydroxybutyrate)s from bio-based polyol cores via zinc catalyzed ring-opening polymerization of Î ² -Butyrolactone. European Polymer Journal, 2021, 160, 110756.	2.6	2