Leonard Deepak Francis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4231188/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boosting acidic water oxidation performance by constructing arrays-like nanoporous lrxRu1â^'xO2 with abundant atomic steps. Nano Research, 2022, 15, 5933-5939.	10.4	25
2	SiO _x Patterned Based Substrates Implemented in Cu(In,Ca)Se ₂ Ultrathin Solar Cells: Optimum Thickness. IEEE Journal of Photovoltaics, 2022, 12, 954-961.	2.5	4
3	Doxorubicin delivery performance of superparamagnetic carbon multi-core shell nanoparticles: pH dependence, stability and kinetic insight. Nanoscale, 2022, 14, 7220-7232.	5.6	6
4	Co ₃ O ₄ CoP Core–Shell Nanoparticles with Enhanced Electrocatalytic Water Oxidation Performance. ACS Applied Nano Materials, 2022, 5, 9150-9158.	5.0	2
5	Sustainable existence of solid mercury (Hg) nanoparticles at room temperature and their applications. Chemical Science, 2021, 12, 3226-3238.	7.4	10
6	Extrinsic room-temperature ferromagnetism in MoS2. Journal of Materials Science, 2021, 56, 9692-9701.	3.7	3
7	Enhancing Light–Matter Interactions in MoS ₂ by Copper Intercalation. Advanced Materials, 2021, 33, e2008779.	21.0	25
8	Morphology-Tunable Synthesis of Intrinsic Room-Temperature Ferromagnetic γ-Fe ₂ O ₃ Nanoflakes. ACS Applied Materials & Interfaces, 2021, 13, 24051-24061.	8.0	15
9	Atomic-Scale Interface Modification Improves the Performance of Cu(In _{1–<i>x</i>} Ga _{<i>x</i>})Se ₂ /Zn(O,S) Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 44207-44213.	8.0	3
10	Engineering surface electron and active site at electrochemical sensing interface of CN vacancy-mediated Prussian blue analogue for analysis of heavy metal ions. Applied Surface Science, 2021, 564, 150131.	6.1	11
11	Boron doped Ni-rich LiNi0.85Co0.10Mn0.05O2 cathode materials studied by structural analysis, solid state NMR, computational modeling, and electrochemical performance. Energy Storage Materials, 2021, 42, 594-607.	18.0	42
12	Selectivity boost in partial hydrogenation of acetylene via atomic dispersion of platinum over ceria. Catalysis Science and Technology, 2020, 10, 7471-7475.	4.1	4
13	A one-pot route to stable Pickering emulsions featuring nanocrystalline Ag and Au. Chemical Communications, 2020, 56, 4801-4803.	4.1	4
14	<i>In situ</i> generation of sub-10 nm silver nanowires under electron beam irradiation in a TEM. Chemical Communications, 2020, 56, 4765-4768.	4.1	11
15	Ultrafine-Grained Porous Ir-Based Catalysts for High-Performance Overall Water Splitting in Acidic Media. ACS Applied Energy Materials, 2020, 3, 3736-3744.	5.1	26
16	Atomic-scale dynamic observation reveals temperature-dependent multistep nucleation pathways in crystallization. Nanoscale Horizons, 2019, 4, 1302-1309.	8.0	17
17	Nanotube array-based barium titanate–cobalt ferrite composite film for affordable magnetoelectric multiferroics. Journal of Materials Chemistry C, 2019, 7, 10066-10072.	5.5	19
18	Thermal Stability of the Black Perovskite Phase in Cesium Lead Iodide Nanocrystals Under Humid Conditions. Chemistry of Materials, 2019, 31, 9750-9758.	6.7	29

#	Article	IF	CITATIONS
19	Surface Science and Colloidal Stability of Double-Perovskite Cs ₂ AgBiBr ₆ Nanocrystals and Their Superlattices. Chemistry of Materials, 2019, 31, 7962-7969.	6.7	57
20	Synthesis and characterization of quaternary La(Sr)S–TaS ₂ misfit-layered nanotubes. Beilstein Journal of Nanotechnology, 2019, 10, 1112-1124.	2.8	5
21	Large-Scale Fabrication of Hollow Pt ₃ Al Nanoboxes and Their Electrocatalytic Performance for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 9842-9847.	6.7	14
22	In Situ Atomic‣cale Observation of Kinetic Pathways of Sublimation in Silver Nanoparticles. Advanced Science, 2019, 6, 1802131.	11.2	27
23	Mesoporous Shell@Macroporous Core Aluminosilicates as Sustainable Nanocatalysts for Direct <i>N</i> â€alkylation of Amines. ChemNanoMat, 2018, 4, 537-541.	2.8	2
24	Direct Atomic-Scale Observation of Intermediate Pathways of Melting and Crystallization in Supported Bi Nanoparticles. Journal of Physical Chemistry Letters, 2018, 9, 961-969.	4.6	22
25	Atomic-Scale Understanding of Gold Cluster Growth on Different Substrates and Adsorption-Induced Structural Change. Journal of Physical Chemistry C, 2018, 122, 1753-1760.	3.1	18
26	Advanced Electron Microscopy Techniques Toward the Understanding of Metal Nanoparticles and Clusters. , 2018, , 219-287.		3
27	In-Situ Atomic-Scale Observation of Intermediate Pathways of Melting and Crystallization of Supported Bi-Nanoparticles in the TEM. Microscopy and Microanalysis, 2018, 24, 1654-1655.	0.4	0
28	Probing of Thermal Transport in 50 nm Thick PbTe Nanocrystal Films by Time-Domain Thermoreflectance. Journal of Physical Chemistry C, 2018, 122, 27127-27134.	3.1	15
29	Morphological Phase Diagram of Gadolinium Iodide Encapsulated in Carbon Nanotubes. Journal of Physical Chemistry C, 2018, 122, 24967-24976.	3.1	6
30	Direct Atomic-Scale Observation of Droplets Coalescence Driven Nucleation and Growth of Supported Bismuth Nanocrystal in the TEM. Microscopy and Microanalysis, 2018, 24, 1702-1703.	0.4	0
31	Single Walled Bil3 Nanotubes Encapsulated within Carbon Nanotubes. Scientific Reports, 2018, 8, 10133.	3.3	9
32	Toward the use of CVD-grown MoS ₂ nanosheets as field-emission source. Beilstein Journal of Nanotechnology, 2018, 9, 1686-1694.	2.8	26
33	In Situ Atomicâ€Scale Study of Particleâ€Mediated Nucleation and Growth in Amorphous Bismuth to Nanocrystal Phase Transformation. Advanced Science, 2018, 5, 1700992.	11.2	74
34	Magneto-Plasmonic Colloidal Nanoparticles Obtained by Laser Ablation of Nickel and Silver Targets in Water. Journal of Physical Chemistry C, 2017, 121, 3597-3606.	3.1	28
35	A Convenient Route for Au@Ti–SiO2 Nanocatalyst Synthesis and Its Application for Room Temperature CO Oxidation. Journal of Physical Chemistry C, 2017, 121, 4946-4957.	3.1	11
36	<i>In Situ</i> Atomic-Scale Observation of Droplet Coalescence Driven Nucleation and Growth at Liquid/Solid Interfaces. ACS Nano, 2017, 11, 5590-5597.	14.6	34

#	Article	IF	CITATIONS
37	Understanding alloy structure and composition in sinter-resistant AgPd@SiO ₂ encapsulated catalysts and their effect on catalytic properties. New Journal of Chemistry, 2017, 41, 14652-14658.	2.8	6
38	Discussion about the use of the volume specific surface area (VSSA) as a criterion to identify nanomaterials according to the EU definition. Part two: experimental approach. Nanoscale, 2017, 9, 14952-14966.	5.6	11
39	High power and low critical current density spin transfer torque nano-oscillators using MgO barriers with intermediate thickness. Scientific Reports, 2017, 7, 7237.	3.3	35
40	Capillary Imbibition of Gadolinium Halides into WS ₂ Nanotubes: a Molecular Dynamics View. Israel Journal of Chemistry, 2017, 57, 501-508.	2.3	1
41	Structural and chemical analysis of gadolinium halides encapsulated within WS ₂ nanotubes. Nanoscale, 2016, 8, 12170-12181.	5.6	7
42	From Chromonic Self-Assembly to Hollow Carbon Nanofibers: Efficient Materials in Supercapacitor and Vapor-Sensing Applications. ACS Applied Materials & amp; Interfaces, 2016, 8, 31231-31238.	8.0	43
43	Real-Time Dynamical Observation of Lattice Induced Nucleation and Growth in Interfacial Solid–Solid Phase Transitions. Crystal Growth and Design, 2016, 16, 7256-7262.	3.0	19
44	Controlling Bimetallic Nanostructures by the Microemulsion Method with Subnanometer Resolution Using a Prediction Model. Langmuir, 2015, 31, 7435-7439.	3.5	22
45	Selfâ€Assembled Functionalized Graphene Nanoribbons from Carbon Nanotubes. ChemistryOpen, 2015, 4, 115-119.	1.9	6
46	Stable Ruthenium colloids by laser ablation. , 2015, , .		2
			-
47	Wavelength dispersion of the local field intensity in silver–gold nanocages. Physical Chemistry Chemical Physics, 2015, 17, 7355-7365.	2.8	18
47 48	Wavelength dispersion of the local field intensity in silver–gold nanocages. Physical Chemistry	2.8 3.1	
	Wavelength dispersion of the local field intensity in silver–gold nanocages. Physical Chemistry Chemical Physics, 2015, 17, 7355-7365. A Systematic Study of the Structural and Magnetic Properties of Mn-, Co-, and Ni-Doped Colloidal		18
48	Wavelength dispersion of the local field intensity in silver–gold nanocages. Physical Chemistry Chemical Physics, 2015, 17, 7355-7365. A Systematic Study of the Structural and Magnetic Properties of Mn-, Co-, and Ni-Doped Colloidal Magnetite Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 11947-11957. Synthesis and characterization of reduced graphene oxide/spiky nickel nanocomposite for	3.1	18 93
48 49	 Wavelength dispersion of the local field intensity in silver–gold nanocages. Physical Chemistry Chemical Physics, 2015, 17, 7355-7365. A Systematic Study of the Structural and Magnetic Properties of Mn-, Co-, and Ni-Doped Colloidal Magnetite Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 11947-11957. Synthesis and characterization of reduced graphene oxide/spiky nickel nanocomposite for nanoelectronic applications. Journal of Materials Chemistry C, 2015, 3, 11516-11523. High-Temperature Magnetism as a Probe for Structural and Compositional Uniformity in Ligand-Capped 	3.1 5.5	18 93 35
48 49 50	 Wavelength dispersion of the local field intensity in silver–gold nanocages. Physical Chemistry Chemical Physics, 2015, 17, 7355-7365. A Systematic Study of the Structural and Magnetic Properties of Mn-, Co-, and Ni-Doped Colloidal Magnetite Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 11947-11957. Synthesis and characterization of reduced graphene oxide/spiky nickel nanocomposite for nanoelectronic applications. Journal of Materials Chemistry C, 2015, 3, 11516-11523. High-Temperature Magnetism as a Probe for Structural and Compositional Uniformity in Ligand-Capped Magnetite Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 28322-28329. Plasmonic response of DNA-assembled gold nanorods: Effect of DNA linker length, temperature and 	3.1 5.5 3.1	18 93 35 26
48 49 50 51	 Wavelength dispersion of the local field intensity in silver–gold nanocages. Physical Chemistry Chemical Physics, 2015, 17, 7355-7365. A Systematic Study of the Structural and Magnetic Properties of Mn-, Co-, and Ni-Doped Colloidal Magnetite Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 11947-11957. Synthesis and characterization of reduced graphene oxide/spiky nickel nanocomposite for nanoelectronic applications. Journal of Materials Chemistry C, 2015, 3, 11516-11523. High-Temperature Magnetism as a Probe for Structural and Compositional Uniformity in Ligand-Capped Magnetite Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 28322-28329. Plasmonic response of DNA-assembled gold nanorods: Effect of DNA linker length, temperature and linker/nanoparticles ratio. Journal of Colloid and Interface Science, 2014, 433, 34-42. 	3.1 5.5 3.1 9.4	18 93 35 26 13

#	Article	IF	CITATIONS
55	Advanced Methods of Electron Microscopy in Catalysis Research. Advances in Imaging and Electron Physics, 2013, , 279-342.	0.2	2
56	Nanomaterial Properties: Size and Shape Dependencies. Journal of Nanomaterials, 2012, 2012, 1-2.	2.7	87
57	Physicochemical Characterization, and Relaxometry Studies of Micro-Graphite Oxide, Graphene Nanoplatelets, and Nanoribbons. PLoS ONE, 2012, 7, e38185.	2.5	57
58	Insights into the Structure of MoS2/WS2 Nanomaterial Catalysts as Revealed by Aberration Corrected STEM. Microscopy and Microanalysis, 2012, 18, 65-66.	0.4	1
59	On the structure of bimetallic noble metal nanoparticles as revealed by aberration corrected scanning transmission electron microscopy (STEM). Micron, 2012, 43, 557-564.	2.2	12
60	Structure and catalytic properties of hexagonal molybdenum disulfide nanoplates. Catalysis Science and Technology, 2011, 1, 1024.	4.1	34
61	Experimental Evidence of Icosahedral and Decahedral Packing in One-Dimensional Nanostructures. ACS Nano, 2011, 5, 6272-6278.	14.6	61
62	Direct Imaging and Identification of Individual Dopant Atoms in MoS ₂ and WS ₂ Catalysts by Aberration Corrected Scanning Transmission Electron Microscopy. ACS Catalysis, 2011, 1, 537-543.	11.2	59
63	Rippled and Helical MoS2 Nanowire Catalysts: An Aberration Corrected STEM Study. Catalysis Letters, 2011, 141, 518-524.	2.6	19
64	Anisotropic gold nanoparticles and gold plates biosynthesis using alfalfa extracts. Journal of Nanoparticle Research, 2011, 13, 3113-3121.	1.9	61
65	Adsorption of Glucose Oxidase to 3â€Ð Scaffolds of Carbon Nanotubes: Analytical Applications. Electroanalysis, 2011, 23, 1462-1469.	2.9	41
66	Experimental and theoretical properties of S–Mo–Co–S clusters. Applied Catalysis A: General, 2011, 397, 46-53.	4.3	5
67	New insights into the structure of Pd–Au nanoparticles as revealed by aberration-corrected STEM. Journal of Crystal Growth, 2011, 325, 60-67.	1.5	27
68	Recent Highlights in the Synthesis, Structure, Properties, and Applications of MoS ₂ Nanotubes. Israel Journal of Chemistry, 2010, 50, 426-438.	2.3	9
69	Synthesis of Core–Shell Inorganic Nanotubes. Advanced Functional Materials, 2010, 20, 2459-2468.	14.9	54
70	Synthesis, Morphology, and Optical Characterization of Nanocrystalline Er3+:Y2O3. Journal of Physical Chemistry C, 2010, 114, 874-880.	3.1	56
71	Insights into the capping and structure of MoS2 nanotubes as revealed by aberration-corrected STEM. Nanoscale, 2010, 2, 2286.	5.6	32
72	A Rapid Microwave Synthesis at Low Temperatures, Electron Microscopy and Raman Study of MoO ₃ and WO <i>_x</i> Nanostructures. Journal of Advanced Microscopy Research, 2010, 5, 16-25.	0.3	0

LEONARD DEEPAK FRANCIS

#	Article	IF	CITATIONS
73	Faceted MoS2 nanotubes and nanoflowers. Materials Chemistry and Physics, 2009, 118, 392-397.	4.0	31
74	Structural transformation of MoO3 nanobelts into MoS2 nanotubes. Applied Physics A: Materials Science and Processing, 2009, 96, 861-867.	2.3	16
75	Fullereneâ€like Mo(W) _{1â^'<i>x</i>} Re _{<i>x</i>} S ₂ Nanoparticles. Chemistry - an Asian Journal, 2008, 3, 1568-1574.	3.3	33
76	Gas-phase synthesis of inorganic fullerene-like structures and inorganic nanotubes. Open Chemistry, 2008, 6, 373-389.	1.9	13
77	Fullerene-like WS ₂ nanoparticles and nanotubes by the vapor-phase synthesis of WCl _{<i>n</i>} and H ₂ S. Nanotechnology, 2008, 19, 095601.	2.6	33
78	Optically Driven Nanorotors: Experiments and Model Calculations. Journal of Nanoscience and Nanotechnology, 2007, 7, 1800-1803.	0.9	4
79	Fullerene-Like (IF) Nb <i>_x</i> Mo ₁ ₋ <i>_x</i> S ₂ Nanoparticles. Journal of the American Chemical Society, 2007, 129, 12549-12562.	13.7	49
80	A study of the dispersions of metal oxide nanowires in polar solvents. Chemical Physics Letters, 2006, 417, 535-539.	2.6	43
81	Nanorotors using asymmetric inorganic nanorods in an optical trap. Nanotechnology, 2006, 17, S287-S290.	2.6	29
82	Improved synthesis of carbon nanotubes with junctions and of single-walled carbon nanotubes. Journal of Chemical Sciences, 2006, 118, 9-14.	1.5	10
83	MoS2 FULLERENE-LIKE NANOPARTICLES AND NANOTUBES USING GAS-PHASE REACTION WITH MoCl5. Nano, 2006, 01, 167-180.	1.0	17
84	Pressure-Induced Structural Phase Transformations in Silicon Nanowires. Journal of Nanoscience and Nanotechnology, 2005, 5, 729-732.	0.9	9
85	Tuning the bandgap of ZnO by substitution with Mn2+, Co2+ and Ni2+. Solid State Communications, 2005, 135, 345-347.	1.9	206
86	Nature and electronic properties of Y-junctions in CNTs and N-doped CNTs obtained by the pyrolysis of organometallic precursors. Chemical Physics Letters, 2005, 411, 468-473.	2.6	41
87	Carbon-assisted synthesis of nanowires and related nanostructures of MgO. Materials Research Bulletin, 2005, 40, 831-839.	5.2	38
88	Soft chemical routes to semiconductor nanostructures. Pramana - Journal of Physics, 2005, 65, 549-564.	1.8	11
89	Absence of ferromagnetism in Mn- and Co-doped ZnO. Journal of Materials Chemistry, 2005, 15, 573.	6.7	304
90	Crystalline silica nanowires. Journal of Materials Research, 2004, 19, 2216-2220.	2.6	26

#	Article	IF	CITATIONS
91	Properties of nanostructured GaN prepared by different methods. Solid State Sciences, 2004, 6, 1107-1112.	3.2	6
92	InN Nanocrystals, Nanowires, and Nanotubes. Small, 2004, 1, 91-94.	10.0	84
93	Carbon nanotubes by nebulized spray pyrolysis. Chemical Physics Letters, 2004, 386, 313-318.	2.6	85
94	In2O3 nanowires, nanobouquets and nanotrees. Chemical Physics Letters, 2004, 397, 329-334.	2.6	57
95	Carbon-assisted synthesis of inorganic nanowires. Journal of Materials Chemistry, 2004, 14, 440.	6.7	93
96	Carbothermal Synthesis of the Nanostructures of Al2O3and ZnO. Topics in Catalysis, 2003, 24, 137-146.	2.8	46
97	Carbon-assisted synthesis of silicon nanowires. Chemical Physics Letters, 2003, 381, 579-583.	2.6	30
98	Photoluminescence spectra and ferromagnetic properties of GaMnN nanowires. Chemical Physics Letters, 2003, 374, 314-318.	2.6	61
99	Inorganic nanowires. Progress in Solid State Chemistry, 2003, 31, 5-147.	7.2	690
100	Photoluminescence spectra and ferromagnetic properties of GaMnN nanowires. World Scientific Series in 20th Century Chemistry, 2003, , 355-359.	0.0	0
101	Optical Spectra of Nanowires of Cu and Zn Chalcogenides. Journal of Nanoscience and Nanotechnology, 2002, 2, 417-420.	0.9	17
102	A Raman Study of CdSe and ZnSe Nanostructures. Journal of Nanoscience and Nanotechnology, 2002, 2, 495-498.	0.9	34
103	Boron nitride nanotubes and nanowires. Chemical Physics Letters, 2002, 353, 345-352.	2.6	153
104	Surfactant-assisted synthesis of semiconductor nanotubes and nanowires. Applied Physics Letters, 2001, 78, 1853-1855.	3.3	233
105	Semiconductor nanorods: Cu, Zn, and Cd chalcogenides. Israel Journal of Chemistry, 2001, 41, 23-30.	2.3	31
106	Single Crystal GaN Nanowires. Journal of Nanoscience and Nanotechnology, 2001, 1, 303-308.	0.9	16
107	Synthetic strategies for Y-junction carbon nanotubes. Chemical Physics Letters, 2001, 345, 5-10.	2.6	108
108	Hydrogen Production by Steam Reforming of Methanol over a Ag/ZnO One Dimensional Catalyst. Advanced Materials Research, 0, 132, 205-219.	0.3	27