
Daniel Karp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4230829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	10.3	524
2	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	7.1	401
3	When natural habitat fails to enhance biological pest control – Five hypotheses. Biological Conservation, 2016, 204, 449-458.	4.1	388
4	Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature, 2018, 561, 538-541.	27.8	332
5	Forest bolsters bird abundance, pest control and coffee yield. Ecology Letters, 2013, 16, 1339-1347.	6.4	322
6	Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends in Ecology and Evolution, 2015, 30, 531-539.	8.7	274
7	Predicting biodiversity change and averting collapse in agricultural landscapes. Nature, 2014, 509, 213-217.	27.8	263
8	Intensive agriculture erodes $\hat{l}^2 \hat{a} \in d$ iversity at large scales. Ecology Letters, 2012, 15, 963-970.	6.4	262
9	Loss of avian phylogenetic diversity in neotropical agricultural systems. Science, 2014, 345, 1343-1346.	12.6	197
10	Key knowledge gaps to achieve global sustainability goals. Nature Sustainability, 2019, 2, 1115-1121.	23.7	193
11	Bird and bat predation services in tropical forests and agroforestry landscapes. Biological Reviews, 2016, 91, 1081-1101.	10.4	182
12	Climate change and habitat conversion favour the same species. Ecology Letters, 2016, 19, 1081-1090.	6.4	118
13	Resilience and stability in bird guilds across tropical countryside. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21134-21139.	7.1	86
14	Cascading effects of insectivorous birds and bats in tropical coffee plantations. Ecology, 2014, 95, 1065-1074.	3.2	83
15	Comanaging fresh produce for nature conservation and food safety. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11126-11131.	7.1	79
16	The eco-evolutionary impacts of domestication and agricultural practices on wild species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160033.	4.0	65
17	Agriculture erases climateâ€driven βâ€diversity in Neotropical bird communities. Global Change Biology, 2018, 24, 338-349.	9.5	60
18	Landscape simplification increases vineyard pest outbreaks and insecticide use. Ecology Letters, 2021, 24, 73-83.	6.4	56

DANIEL KARP

#	Article	IF	CITATIONS
19	Agricultural practices for food safety threaten pest control services for fresh produce. Journal of Applied Ecology, 2016, 53, 1402-1412.	4.0	51
20	The Unintended Ecological and Social Impacts of Food Safety Regulations in California's Central Coast Region. BioScience, 2015, 65, 1173-1183.	4.9	47
21	Sound the stressor: how Hoatzins (Opisthocomus hoazin) react to ecotourist conversation. Biodiversity and Conservation, 2009, 18, 3733-3742.	2.6	45
22	Bird services and disservices to strawberry farming in Californian agricultural landscapes. Journal of Applied Ecology, 2019, 56, 1948-1959.	4.0	43
23	Approaching human-animal relationships from multiple angles: A synthetic perspective. Biological Conservation, 2018, 224, 50-62.	4.1	35
24	Measuring What Matters: Actionable Information for Conservation Biocontrol in Multifunctional Landscapes. Frontiers in Sustainable Food Systems, 2019, 3, .	3.9	34
25	Organic farming promotes biotic resistance to foodborne human pathogens. Journal of Applied Ecology, 2019, 56, 1117-1127.	4.0	34
26	The Good, the Bad, and the Risky: Can Birds Be Incorporated as Biological Control Agents into Integrated Pest Management Programs?. Journal of Integrated Pest Management, 2020, 11, .	2.0	33
27	Confronting and resolving competing values behind conservation objectives. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11132-11137.	7.1	32
28	Understanding the pathways from biodiversity to agro-ecological outcomes: A new, interactive approach. Agriculture, Ecosystems and Environment, 2020, 301, 107053.	5.3	32
29	Inconsistent food safety pressures complicate environmental conservation for California produce growers. California Agriculture, 2016, 70, 142-151.	0.8	32
30	Species traits elucidate crop pest response to landscape composition: a global analysis. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202116.	2.6	30
31	Role of soil in the regulation of human and plant pathogens: soils' contributions to people. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200179.	4.0	30
32	Shifts in species interactions and farming contexts mediate net effects of birds in agroecosystems. Ecological Applications, 2020, 30, e02115.	3.8	29
33	Can avian functional traits predict cultural ecosystem services?. People and Nature, 2020, 2, 138-151.	3.7	28
34	Experimental field exclosure of birds and bats in agricultural systems — Methodological insights, potential improvements, and cost-benefit trade-offs. Basic and Applied Ecology, 2019, 35, 1-12.	2.7	26
35	Natural habitat increases natural pest control in olive groves: economic implications. Journal of Pest Science, 2019, 92, 1111-1121.	3.7	25
36	Evolving Food Safety Pressures in California's Central Coast Region. Frontiers in Sustainable Food Systems, 2019, 3, .	3.9	25

DANIEL KARP

#	Article	IF	CITATIONS
37	Models of natural pest control: Towards predictions across agricultural landscapes. Biological Control, 2021, 163, 104761.	3.0	22
38	Iconic manakins and despicable grackles: Comparing cultural ecosystem services and disservices access stakeholders in Costa Rica. Ecological Indicators, 2019, 106, 105454.	6.3	19
39	Cascading effects of composts and cover crops on soil chemistry, bacterial communities and the survival of foodborne pathogens. Journal of Applied Microbiology, 2021, 131, 1564-1577.	3.1	18
40	Molecular diagnosis of bird-mediated pest consumption in tropical farmland. SpringerPlus, 2014, 3, 630.	1.2	16
41	Avian cultural services peak in tropical wet forests. Conservation Letters, 2021, 14, e12763.	5.7	16
42	The "Sweet Spot―in the Middle: Why Do Mid-Scale Farms Adopt Diversification Practices at Higher Rates?. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	16
43	Genetic variation reveals individualâ€level climate tracking across the annual cycle of a migratory bird. Ecology Letters, 2021, 24, 819-828.	6.4	15
44	Conversational Noise Reduction as a Win-Win for Ecotourists and Rain Forest Birds in Peru. Biotropica, 2011, 43, 122-130.	1.6	14
45	Speciesâ€specific responses to habitat conversion across scales synergistically restructure Neotropical bird communities. Ecological Applications, 2019, 29, e01910.	3.8	14
46	Semiâ€natural habitat surrounding farms promotes multifunctionality in avian ecosystem services. Journal of Applied Ecology, 2022, 59, 898-908.	4.0	13
47	Remnant forest in Costa Rican working landscapes fosters bird communities that are indistinguishable from protected areas. Journal of Applied Ecology, 2019, 56, 1839-1849.	4.0	12
48	Nonrandom extinction patterns can modulate pest control service decline. Ecological Applications, 2013, 23, 840-849.	3.8	11
49	Archetype models upscale understanding of natural pest control response to landâ€use change. Ecological Applications, 2022, 32, .	3.8	11
50	Do correlated responses to multiple environmental changes exacerbate or mitigate species loss?. Oikos, 2018, 127, 1724-1734.	2.7	8
51	Social-ecological feedbacks drive tipping points in farming system diversification. One Earth, 2022, 5, 283-292.	6.8	8
52	The causes and consequences of pest population variability in agricultural landscapes. Ecological Applications, 2022, 32, e2607.	3.8	8
53	Eco-xenophobia among rural populations: the Great-tailed Grackle as a contested species in Guanacaste, Costa Rica. Human Dimensions of Wildlife, 2019, 24, 332-348.	1.8	7
54	Complex landscapes stabilize farm bird communities and their expected ecosystem services. Journal of Applied Ecology, 2022, 59, 927-941.	4.0	7

DANIEL KARP

#	Article	IF	CITATIONS
55	A traitâ€based framework for predicting foodborne pathogen risk from wild birds. Ecological Applications, 2022, 32, e2523.	3.8	7
56	Precipitation and tree cover gradients structure avian alpha diversity in Northâ€western Costa Rica. Diversity and Distributions, 2019, 25, 1222-1233.	4.1	6
57	A hierarchical Nâ€mixture model to estimate behavioral variation and a case study of Neotropical birds. Ecological Applications, 2022, 32, e2632.	3.8	5
58	Nature's bounties: reliance on pollinators for health. Lancet, The, 2015, 386, 1925-1927.	13.7	2
59	Interactive effects of multiscale diversification practices on farmland bird stress. Conservation Biology, 2022, 36, .	4.7	1
60	Reply to Kirchhoff: Homogenous and mutually exclusive conservation typologies are neither possible nor desirable. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5906-E5906.	7.1	0
61	Speciesâ€specific responses to habitat conversion across scales synergistically restructure Neotropical bird communities. Bulletin of the Ecological Society of America, 2019, 100, e01559.	0.2	0
62	Feedlot Association Increases Food Safety Risk Associated with Wild Birds. Bulletin of the Ecological Society of America, 2022, 103, .	0.2	0