
Bo Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4230751/publications.pdf Version: 2024-02-01

Ro ZHONC

#	Article	IF	CITATIONS
1	The industrial solvent 1,4-dioxane causes hyperalgesia by targeting capsaicin receptor TRPV1. BMC Biology, 2022, 20, 10.	3.8	3
2	Regulation and function of the cGAS-MITA/STING axis in health and disease. , 2022, 1, 100001.		15
3	ILâ€36 γ and ILâ€36Ra Reciprocally Regulate Colon Inflammation and Tumorigenesis by Modulating the Cell–Matrix Adhesion Network and Wnt Signaling. Advanced Science, 2022, , 2103035.	11.2	12
4	RNF115 Inhibits the Postâ€ER Trafficking of TLRs and TLRsâ€Mediated Immune Responses by Catalyzing K11â€Linked Ubiquitination of RAB1A and RAB13. Advanced Science, 2022, 9, e2105391.	11.2	15
5	USP2 promotes experimental colitis and bacterial infections by inhibiting the proliferation of myeloid cells and remodeling the extracellular matrix network. , 2022, 1, 100047.		6
6	The SUMOylation of TAB2 mediated by TRIM60 inhibits MAPK/NF-κB activation and the innate immune response. Cellular and Molecular Immunology, 2021, 18, 1981-1994.	10.5	9
7	Histone deacetylase 3 promotes innate antiviral immunity through deacetylation of TBK1. Protein and Cell, 2021, 12, 261-278.	11.0	18
8	Transcription factor Ascl2 promotes germinal center B cell responses by directly regulating AID transcription. Cell Reports, 2021, 35, 109188.	6.4	5
9	Epigenetic Dysregulation Induces Translocation of Histone H3 into Cytoplasm. Advanced Science, 2021, 8, e2100779.	11.2	5
10	ILâ€36 <i>γ</i> and ILâ€36Ra Reciprocally Regulate NSCLC Progression by Modulating GSH Homeostasis and Oxidative Stressâ€Induced Cell Death. Advanced Science, 2021, 8, e2101501.	11.2	10
11	Histone demethylase LSD1 promotes RIC-I poly-ubiquitination and anti-viral gene expression. PLoS Pathogens, 2021, 17, e1009918.	4.7	2
12	NUMB enhances Notch signaling by repressing ubiquitination of NOTCH1 intracellular domain. Journal of Molecular Cell Biology, 2020, 12, 345-358.	3.3	40
13	Site-specific contacts enable distinct modes of TRPV1 regulation by the potassium channel Kvl²1 subunit. Journal of Biological Chemistry, 2020, 295, 17337-17348.	3.4	5
14	CCL7 recruits cDC1 to promote antitumor immunity and facilitate checkpoint immunotherapy to non-small cell lung cancer. Nature Communications, 2020, 11, 6119.	12.8	53
15	USP22 promotes IRF3 nuclear translocation and antiviral responses by deubiquitinating the importin protein KPNA2. Journal of Experimental Medicine, 2020, 217, .	8.5	37
16	SOSTDC1-producing follicular helper T cells promote regulatory follicular T cell differentiation. Science, 2020, 369, 984-988.	12.6	31
17	RNF115 plays dual roles in innate antiviral responses by catalyzing distinct ubiquitination of MAVS and MITA. Nature Communications, 2020, 11, 5536.	12.8	51
18	Dispensable role of CCL28 in <italic>Kras</italic> -mutated non-small cell lung cancer mouse models. Acta Biochimica Et Biophysica Sinica, 2020, 52, 691-694.	2.0	4

Во Zнолс

#	Article	IF	CITATIONS
19	USP29 maintains the stability of cGAS and promotes cellular antiviral responses and autoimmunity. Cell Research, 2020, 30, 914-927.	12.0	47
20	The deubiquitinase USP25 supports colonic inflammation and bacterial infection and promotes colorectal cancer. Nature Cancer, 2020, 1, 811-825.	13.2	40
21	RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerging Microbes and Infections, 2020, 9, 313-319.	6.5	471
22	Phosphorylation of MAVS/VISA by Nemo-like kinase (NLK) for degradation regulates the antiviral innate immune response. Nature Communications, 2019, 10, 3233.	12.8	35
23	USP19 Inhibits TNF-α– and IL-1β–Triggered NF-κB Activation by Deubiquitinating TAK1. Journal of Immunology, 2019, 203, 259-268.	0.8	83
24	USP49 negatively regulates cellular antiviral responses via deconjugating K63-linked ubiquitination of MITA. PLoS Pathogens, 2019, 15, e1007680.	4.7	43
25	Recovery from tachyphylaxis of TRPV1 coincides with recycling to the surface membrane. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5170-5175.	7.1	34
26	Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature, 2019, 567, 525-529.	27.8	311
27	USP20 Promotes Cellular Antiviral Responses via Deconjugating K48-Linked Ubiquitination of MITA. Journal of Immunology, 2019, 202, 2397-2406.	0.8	23
28	Induction of OTUD4 by viral infection promotes antiviral responses through deubiquitinating and stabilizing MAVS. Cell Research, 2019, 29, 67-79.	12.0	76
29	USP2a Supports Metastasis by Tuning TGF-Î ² Signaling. Cell Reports, 2018, 22, 2442-2454.	6.4	49
30	A Naturally Occurring Deletion in the Effector Domain of H5N1 Swine Influenza Virus Nonstructural Protein 1 Regulates Viral Fitness and Host Innate Immunity. Journal of Virology, 2018, 92, .	3.4	20
31	Regulation of Cellular Antiviral Signaling by Modifications of Ubiquitin and Ubiquitin-like Molecules. Immune Network, 2018, 18, e4.	3.6	16
32	Kobuvirus VP3 protein restricts the IFN-β-triggered signaling pathway by inhibiting STAT2-IRF9 and STAT2-STAT2 complex formation. Virology, 2017, 507, 161-169.	2.4	9
33	Regulation of T helper cell differentiation by E3 ubiquitin ligases and deubiquitinating enzymes. International Immunopharmacology, 2017, 42, 150-156.	3.8	7
34	Human Virus-Derived Small RNAs Can Confer Antiviral Immunity in Mammals. Immunity, 2017, 46, 992-1004.e5.	14.3	114
35	USP13 negatively regulates antiviral responses by deubiquitinating STING. Nature Communications, 2017, 8, 15534.	12.8	138
36	<i>Ubc9</i> Is Required for Positive Selection and Late-Stage Maturation of Thymocytes. Journal of Immunology, 2017, 198, 3461-3470.	0.8	21

Во Zнолс

#	Article	IF	CITATIONS
37	miR-148a inhibits colitis and colitis-associated tumorigenesis in mice. Cell Death and Differentiation, 2017, 24, 2199-2209.	11.2	62
38	Cyclic AMP-Responsive Element-Binding Protein (CREB) is Critical in Autoimmunity by Promoting Th17 but Inhibiting Treg Cell Differentiation. EBioMedicine, 2017, 25, 165-174.	6.1	31
39	Induction of INKIT by Viral Infection Negatively Regulates Antiviral Responses through Inhibiting Phosphorylation of p65 and IRF3. Cell Host and Microbe, 2017, 22, 86-98.e4.	11.0	30
40	The Anti-Inflammatory Properties of Citrus wilsonii Tanaka Extract in LPS-Induced RAW 264.7 and Primary Mouse Bone Marrow-Derived Dendritic Cells. Molecules, 2017, 22, 1213.	3.8	36
41	TRIM32-TAX1BP1-dependent selective autophagic degradation of TRIF negatively regulates TLR3/4-mediated innate immune responses. PLoS Pathogens, 2017, 13, e1006600.	4.7	89
42	LSm14A Plays a Critical Role in Antiviral Immune Responses by Regulating MITA Level in a Cell-Specific Manner. Journal of Immunology, 2016, 196, 5101-5111.	0.8	34
43	The Type I Interferon-IRF7 Axis Mediates Transcriptional Expression of Usp25 Gene. Journal of Biological Chemistry, 2016, 291, 13206-13215.	3.4	30
44	iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nature Immunology, 2016, 17, 1057-1066.	14.5	200
45	Duck Tembusu Virus Nonstructural Protein 1 Antagonizes IFN-Î ² Signaling Pathways by Targeting VISA. Journal of Immunology, 2016, 197, 4704-4713.	0.8	56
46	USP18 recruits USP20 to promote innate antiviral response through deubiquitinating STING/MITA. Cell Research, 2016, 26, 1302-1319.	12.0	109
47	DYRK2 Negatively Regulates Type I Interferon Induction by Promoting TBK1 Degradation via Ser527 Phosphorylation. PLoS Pathogens, 2015, 11, e1005179.	4.7	49
48	Regulation of cellular innate antiviral signaling by ubiquitin modification. Acta Biochimica Et Biophysica Sinica, 2015, 47, 149-155.	2.0	14
49	ECSIT Bridges RIG-I-Like Receptors to VISA in Signaling Events of Innate Antiviral Responses. Journal of Innate Immunity, 2015, 7, 153-164.	3.8	28
50	Parafibromin Is a Component of IFN-γ–Triggered Signaling Pathways That Facilitates JAK1/2-Mediated Tyrosine Phosphorylation of STAT1. Journal of Immunology, 2015, 195, 2870-2878.	0.8	15
51	Induction of USP25 by viral infection promotes innate antiviral responses by mediating the stabilization of TRAF3 and TRAF6. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11324-11329.	7.1	99
52	Differential expression of bone morphogenetic protein 5 in human lung squamous cell carcinoma and adenocarcinoma. Acta Biochimica Et Biophysica Sinica, 2015, 47, 557-563.	2.0	26
53	RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms. PLoS Pathogens, 2014, 10, e1004358.	4.7	158
54	Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature, 2014, 507, 513-518.	27.8	303

Во Zнолс

#	Article	IF	CITATIONS
55	TRIM38 inhibits TNFα- and IL-1β–triggered NF-κB activation by mediating lysosome-dependent degradation of TAB2/3. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1509-1514.	7.1	113
56	The ER-Associated Protein ZDHHC1 Is a Positive Regulator of DNA Virus-Triggered, MITA/STING-Dependent Innate Immune Signaling. Cell Host and Microbe, 2014, 16, 450-461.	11.0	129
57	Ubiquitin-Specific Protease 25 Regulates TLR4-Dependent Innate Immune Responses Through Deubiquitination of the Adaptor Protein TRAF3. Science Signaling, 2013, 6, ra35.	3.6	94
58	FoxO1 Negatively Regulates Cellular Antiviral Response by Promoting Degradation of IRF3. Journal of Biological Chemistry, 2013, 288, 12596-12604.	3.4	77
59	Bcl6 expression specifies the T follicular helper cell program in vivo. Journal of Experimental Medicine, 2012, 209, 1841-1852.	8.5	227
60	Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nature Immunology, 2012, 13, 1110-1117.	14.5	162
61	Regulation of virus-triggered type I interferon signaling by cellular and viral proteins. Frontiers in Biology, 2010, 5, 12-31.	0.7	6
62	Glycogen Synthase Kinase 3β Regulates IRF3 Transcription Factor-Mediated Antiviral Response via Activation of the Kinase TBK1. Immunity, 2010, 33, 878-889.	14.3	154
63	The ubiquitin-specific protease 17 is involved in virus-triggered type I IFN signaling. Cell Research, 2010, 20, 802-811.	12.0	57
64	Regulation of Virus-triggered Signaling by OTUB1- and OTUB2-mediated Deubiquitination of TRAF3 and TRAF6. Journal of Biological Chemistry, 2010, 285, 4291-4297.	3.4	161
65	Virus-triggered Ubiquitination of TRAF3/6 by cIAP1/2 Is Essential for Induction of Interferon-β (IFN-β) and Cellular Antiviral Response. Journal of Biological Chemistry, 2010, 285, 9470-9476.	3.4	117
66	The E3 Ubiquitin Ligase RNF5 Targets Virus-Induced Signaling Adaptor for Ubiquitination and Degradation. Journal of Immunology, 2010, 184, 6249-6255.	0.8	147
67	The Ubiquitin Ligase RNF5 Regulates Antiviral Responses by Mediating Degradation of the Adaptor Protein MITA. Immunity, 2009, 30, 397-407.	14.3	378
68	The Adaptor Protein MITA Links Virus-Sensing Receptors to IRF3 Transcription Factor Activation. Immunity, 2008, 29, 538-550.	14.3	1,209
69	The Adaptor Protein MITA Links Virus-Sensing Receptors to IRF3 Transcription Factor Activation. Immunity, 2008, 29, 538-550.	14.3	753
70	Innate immune responses: Crosstalk of signaling and regulation of gene transcription. Virology, 2006, 352, 14-21.	2.4	46