
Chang-Qing Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4230663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Remote ischemic conditioning enhances oxygen supply to ischemic brain tissue in a mouse model of stroke: Role of elevated 2,3-biphosphoglycerate in erythrocytes. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1277-1290.	4.3	15
2	Dual-Sized Microparticle System for Generating Suppressive Dendritic Cells Prevents and Reverses Type 1 Diabetes in the Nonobese Diabetic Mouse Model. ACS Biomaterials Science and Engineering, 2019, 5, 2631-2646.	5.2	58
3	Role of exosomes induced by remote ischemic preconditioning in neuroprotection against cerebral ischemia. NeuroReport, 2019, 30, 834-841.	1.2	34
4	Phenotypic and Functional Diversities of Myeloid-Derived Suppressor Cells in Autoimmune Diseases. Mediators of Inflammation, 2018, 2018, 1-8.	3.0	15
5	Immature Dendritic Cell Therapy Confers Durable Immune Modulation in an Antigen-Dependent and Antigen-Independent Manner in Nonobese Diabetic Mice. Journal of Immunology Research, 2018, 2018, 1-13.	2.2	13
6	Effect of high glucose on cytokine production by human peripheral blood immune cells and type I interferon signaling in monocytes: Implications for the role of hyperglycemia in the diabetes inflammatory process and host defense against infection. Clinical Immunology, 2018, 195, 139-148.	3.2	58
7	CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Research, 2017, 27, 154-157.	12.0	274
8	CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells. Frontiers of Medicine, 2017, 11, 554-562.	3.4	170
9	Cytotoxic protein from the mushroom <i>Coprinus comatus</i> possesses a unique mode for glycan binding and specificity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8980-8985.	7.1	21
10	Type 1 Diabetes and Type 1 Interferonopathies: Localization of a Type 1 Common Thread of Virus Infection in the Pancreas. EBioMedicine, 2017, 22, 10-17.	6.1	29
11	PD-1/PD-L1 Interaction Maintains Allogeneic Immune Tolerance Induced by Administration of Ultraviolet B-Irradiated Immature Dendritic Cells. Journal of Immunology Research, 2016, 2016, 1-11.	2.2	2
12	Potent antigen-specific immune response induced by infusion of spleen cells coupled with succinimidyl-4-(N-maleimidomethyl cyclohexane)-1-carboxylate (SMCC) conjugated antigens. International Immunopharmacology, 2016, 31, 158-168.	3.8	6
13	Immunosuppressive CD11b+Ly6Chi monocytes in pristane-induced lupus mouse model. Journal of Leukocyte Biology, 2016, 99, 1121-1129.	3.3	20
14	MicroRNA-17-92 controls T-cell responses in graft-versus-host disease and leukemia relapse in mice. Blood, 2015, 126, 1314-1323.	1.4	58
15	Infusion of Sulfosuccinimidyl-4-[N-maleimidomethyl]cyclohexane-1-carboxylate-Conjugated MOG35–55-Coupled Spleen Cells Effectively Prevents and Reverses Experimental Autoimmune Encephalomyelitis in Mice. Journal of Immunology Research, 2015, 2015, 1-14.	2.2	4
16	Administration of sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate conjugated GP10025–33 peptide-coupled spleen cells effectively mounts antigen-specific immune response against mouse melanoma. Biochemical and Biophysical Research Communications, 2015, 468, 46-52.	2.1	4
17	Essential Role of Interleukin-12/23p40 in the Development of Graft-versus-Host Disease in Mice. Biology of Blood and Marrow Transplantation, 2015, 21, 1195-1204.	2.0	26
18	Neutrophil CD64 serves as a sensitive and reliable biomarker for the diagnosis of bacterial infection in hematological disorders. Journal of Infection, 2015, 70, 543-545.	3.3	3

CHANG-QING XIA

#	Article	IF	CITATIONS
19	Effects of Type 1 Diabetes-Associated IFIH1 Polymorphisms on MDA5 Function and Expression. Current Diabetes Reports, 2015, 15, 96.	4.2	47
20	Thioredoxin Priming Prolongs Lung Allograft Survival by Promoting Immune Tolerance. PLoS ONE, 2015, 10, e0124705.	2.5	2
21	Characterization of Bone Marrow-Derived Dendritic Cells Developed in Serum-Free Media and their Ability to Prevent Type 1 Diabetes in Nonobese Diabetic Mice. Journal of Blood Disorders & Transfusion, 2014, 05, .	0.1	8
22	Anti-CD3 Antibody Treatment Induces Hypoglycemia and Super Tolerance to Glucose Challenge in Mice through Enhancing Glucose Consumption by Activated Lymphocytes. Journal of Immunology Research, 2014, 2014, 1-11.	2.2	6
23	Increased IFN-α–Producing Plasmacytoid Dendritic Cells (pDCs) in Human Th1-Mediated Type 1 Diabetes: pDCs Augment Th1 Responses through IFN-α Production. Journal of Immunology, 2014, 193, 1024-1034.	0.8	60
24	Tolerance induction between two different strains of parental mice prevents graft-versus-host disease in haploidentical hematopoietic stem cell transplantation to F1 mice. Biochemical and Biophysical Research Communications, 2014, 446, 1035-1041.	2.1	2
25	C-Abl Inhibitor Imatinib Enhances Insulin Production by \hat{I}^2 Cells: C-Abl Negatively Regulates Insulin Production via Interfering with the Expression of NKx2.2 and GLUT-2. PLoS ONE, 2014, 9, e97694.	2.5	24
26	Immune-mediated neuromuscular complications after haploidendtical hematopoietic stem cell transplantation. Chinese Medical Journal, 2014, 127, 2865-7.	2.3	3
27	New insights into the immunopathogenesis of systemic lupus erythematosus: the role of T follicular helper cells. Chinese Medical Journal, 2014, 127, 3496-502.	2.3	1
28	Anti-lymphocyte antibody-based immunotherapy in type 1 diabetes. Chinese Medical Journal, 2013, 126, 957-64.	2.3	0
29	Anti-thymocyte globulin (ATG) differentially depletes naÃ⁻ve and memory T cells and permits memory-type regulatory T cells in nonobese diabetic mice. BMC Immunology, 2012, 13, 70.	2.2	27
30	Steady-State Cell Apoptosis and Immune Tolerance - Induction of Tolerance Using Apoptotic Cells in Type 1 Diabetes and Other Immune-Mediated Disorders. , 2011, , .		1
31	Administration of recombinant human thioredoxinâ€1 significantly delays and prevents autoimmune diabetes in nonobese diabetic mice through modulation of autoimmunity. Diabetes/Metabolism Research and Reviews, 2011, 27, 809-812.	4.0	12
32	Experimental extracorporeal photopheresis therapy significantly delays the development of diabetes in non-obese diabetic mice. Clinical Immunology, 2010, 135, 374-383.	3.2	9
33	Extracorporeal photopheresis-induced immune tolerance: a focus on modulation of antigen-presenting cells and induction of regulatory T cells by apoptotic cells. Current Opinion in Organ Transplantation, 2009, 14, 338-343.	1.6	51
34	Apoptotic Non-β Cells Suppress β Cell Antigen-Reactive T Cells and Induce β Cell Antigen-Specific Regulatory T Cells. Annals of the New York Academy of Sciences, 2008, 1150, 167-170.	3.8	3
35	Infusion of UVB-treated splenic stromal cells induces suppression of β cell antigen-specific T cell responses in NOD mice. Journal of Autoimmunity, 2008, 30, 283-292.	6.5	12
36	Transfusion of Apoptotic β-Cells Induces Immune Tolerance to β-Cell Antigens and Prevents Type 1 Diabetes in NOD Mice. Diabetes, 2007, 56, 2116-2123.	0.6	61

#	Article	IF	CITATIONS
37	Dendritic cells post-maturation are reprogrammed with heightened IFN-γ and IL-10. Biochemical and Biophysical Research Communications, 2007, 352, 960-965.	2.1	11
38	Peptide-Pulsed Immature Dendritic Cells Reduce Response to beta Cell Target Antigens and Protect NOD Recipients from Type I Diabetes. Annals of the New York Academy of Sciences, 2006, 1079, 153-156.	3.8	21
39	Induction of immune tolerance across major histocompatibility complex barrier by transfusion of ultraviolet B-irradiated immature dendritic cells. Transfusion, 2005, 45, 181-188.	1.6	11
40	Effect of CXC chemokine platelet factor 4 on differentiation and function of monocyte-derived dendritic cells. International Immunology, 2003, 15, 1007-1015.	4.0	67
41	Heparin Induces Differentiation of CD1a+ Dendritic Cells from Monocytes: Phenotypic and Functional Characterization. Journal of Immunology, 2002, 168, 1131-1138.	0.8	38