Luiz F Ferrari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4230444/publications.pdf

Version: 2024-02-01

38	1,376	25	36
papers	citations	h-index	g-index
38	38	38	1571 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Oncostatin M induces hyperalgesic priming and amplifies signaling of cAMP to ERK by RapGEF2 and PKA. Journal of Neurochemistry, 2021, 157, 1821-1837.	3.9	12
2	D2 Receptors in the Periaqueductal Gray/Dorsal Raphe Modulate Peripheral Inflammatory Hyperalgesia via the Rostral Ventral Medulla. Neuroscience, 2021, 463, 159-173.	2.3	7
3	Sexual dimorphism in the contribution of neuroendocrine stress axes to oxaliplatin-induced painful peripheral neuropathy. Pain, 2021, 162, 907-918.	4.2	9
4	A novel rat model of temporomandibular disorder with improved face and construct validities. Life Sciences, 2021, 286, 120023.	4.3	3
5	Marked sexual dimorphism in neuroendocrine mechanisms for the exacerbation of paclitaxel-induced painful peripheral neuropathy by stress. Pain, 2020, 161, 865-874.	4.2	26
6	Systemic Morphine Produces Dose-dependent Nociceptor-mediated Biphasic Changes in Nociceptive Threshold and Neuroplasticity. Neuroscience, 2019, 398, 64-75.	2.3	14
7	Swedish Nerve Growth Factor Mutation (NGF ^{R100W}) Defines a Role for TrkA and p75 ^{NTR} in Nociception. Journal of Neuroscience, 2018, 38, 3394-3413.	3.6	34
8	Fentanyl Induces Rapid Onset Hyperalgesic Priming: Type I at Peripheral and Type II at Central Nociceptor Terminals. Journal of Neuroscience, 2018, 38, 2226-2245.	3.6	31
9	Role of GPCR (mu-opioid)–receptor tyrosine kinase (epidermal growth factor) crosstalk in opioid-induced hyperalgesic priming (type II). Pain, 2018, 159, 864-875.	4.2	21
10	Age-Dependent Sexual Dimorphism in Susceptibility to Develop Chronic Pain in the Rat. Neuroscience, 2018, 387, 170-177.	2.3	10
11	CD44 Signaling Mediates High Molecular Weight Hyaluronan-Induced Antihyperalgesia. Journal of Neuroscience, 2018, 38, 308-321.	3.6	38
12	Mu-opioid Receptor (MOR) Biased Agonists Induce Biphasic Dose-dependent Hyperalgesia and Analgesia, and Hyperalgesic Priming in the Rat. Neuroscience, 2018, 394, 60-71.	2.3	27
13	Marked sexual dimorphism in 5-HT 1 receptors mediating pronociceptive effects of sumatriptan. Neuroscience, 2017, 344, 394-405.	2.3	18
14	Regulation of Expression of Hyperalgesic Priming by Estrogen Receptor \hat{l}_{\pm} in the Rat. Journal of Pain, 2017, 18, 574-582.	1.4	11
15	Sexual Dimorphism in a Reciprocal Interaction of Ryanodine and IP ₃ Receptors in the Induction of Hyperalgesic Priming. Journal of Neuroscience, 2017, 37, 2032-2044.	3.6	39
16	Hyperalgesic priming (type II) induced by repeated opioid exposure: maintenance mechanisms. Pain, 2017, 158, 1204-1216.	4.2	39
17	Gi-protein–coupled 5-HT1B/D receptor agonist sumatriptan induces type I hyperalgesic priming. Pain, 2016, 157, 1773-1782.	4.2	29
18	Adenosine-A1 receptor agonist induced hyperalgesic priming type II. Pain, 2016, 157, 698-709.	4.2	29

#	Article	IF	Citations
19	Marked Sexual Dimorphism in the Role of the Ryanodine Receptor in a Model of Pain Chronification in the Rat. Scientific Reports, 2016, 6, 31221.	3.3	47
20	Contribution of Piezo2 to Endothelium-Dependent Pain. Molecular Pain, 2015, 11, s12990-015-0068.	2.1	31
21	Distinct Terminal and Cell Body Mechanisms in the Nociceptor Mediate Hyperalgesic Priming. Journal of Neuroscience, 2015, 35, 6107-6116.	3.6	50
22	Accounting for the Delay in the Transition from Acute to Chronic Pain: Axonal and Nuclear Mechanisms. Journal of Neuroscience, 2015, 35, 495-507.	3.6	51
23	Repeated Mu-Opioid Exposure Induces a Novel Form of the Hyperalgesic Priming Model for Transition to Chronic Pain. Journal of Neuroscience, 2015, 35, 12502-12517.	3.6	68
24	Plasma Membrane Mechanisms in a Preclinical Rat Model ofÂChronic Pain. Journal of Pain, 2015, 16, 60-66.	1.4	28
25	Second Messengers Mediating the Expression of Neuroplasticity in a Model of Chronic Pain in the Rat. Journal of Pain, 2014, 15, 312-320.	1.4	30
26	Neural mechanisms of pain and alcohol dependence. Pharmacology Biochemistry and Behavior, 2013, 112, 34-41.	2.9	88
27	Peripheral Administration of Translation Inhibitors Reverses Increased Hyperalgesia in a Model of Chronic Pain in the Rat. Journal of Pain, 2013, 14, 731-738.	1.4	66
28	Role of a novel nociceptor autocrine mechanism in chronic pain. European Journal of Neuroscience, 2013, 37, 1705-1713.	2.6	33
29	Role of Nociceptor ÂCaMKII in Transition from Acute to Chronic Pain (Hyperalgesic Priming) in Male and Female Rats. Journal of Neuroscience, 2013, 33, 11002-11011.	3.6	75
30	InÂVivo and inÂVitro Comparison of Female and Male Nociceptors. Journal of Pain, 2012, 13, 1224-1231.	1.4	28
31	Role of Drp1, a Key Mitochondrial Fission Protein, in Neuropathic Pain. Journal of Neuroscience, 2011, 31, 11404-11410.	3.6	79
32	Early-life stress produces muscle hyperalgesia and nociceptor sensitization in the adult rat. Pain, 2011, 152, 2549-2556.	4.2	93
33	Muscle pain in models of chemotherapyâ€induced and alcoholâ€induced peripheral neuropathy. Annals of Neurology, 2011, 70, 101-109.	5.3	30
34	Alcohol consumption enhances antiretroviral painful peripheral neuropathy by mitochondrial mechanisms. European Journal of Neuroscience, 2010, 32, 811-818.	2.6	44
35	Attenuation of Activity in an Endogenous Analgesia Circuit by Ongoing Pain in the Rat. Journal of Neuroscience, 2010, 30, 13699-13706.	3.6	36
36	15d-Prostaglandin J ₂ Inhibits Inflammatory Hypernociception: Involvement of Peripheral Opioid Receptor. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 313-321.	2.5	61

Luiz F Ferrari

#	Article	IF	CITATIONS
37	Teleantagonism: A pharmacodynamic property of the primary nociceptive neuron. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19038-19043.	7.1	23
38	Indirect mechanism of histamine-induced nociception in temporomandibular joint of rats. Life Sciences, 2007, 81, 765-771.	4.3	18