Maria Antonia Poca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4230184/publications.pdf

Version: 2024-02-01

97 papers

6,105 citations

36 h-index 74163 75 g-index

104 all docs

104 docs citations

104 times ranked 7909 citing authors

#	Article	IF	CITATIONS
1	Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurology, The, 2017, 16, 987-1048.	10.2	1,571
2	TGF- \hat{l}^2 Receptor Inhibitors Target the CD44high/Id1high Glioma-Initiating Cell Population in Human Glioblastoma. Cancer Cell, 2010, 18, 655-668.	16.8	534
3	TGF- \hat{l}^2 Increases Glioma-Initiating Cell Self-Renewal through the Induction of LIF in Human Glioblastoma. Cancer Cell, 2009, 15, 315-327.	16.8	489
4	Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Medicine, 2015, 41, 1517-1528.	8.2	263
5	Cerebral Hemodynamic Effects of 7.2% Hypertonic Saline in Patients with Head Injury and Raised Intracranial Pressure. Journal of Neurotrauma, 2000, 17, 41-51.	3.4	171
6	Posterior Fossa Reconstruction. Neurosurgery, 1994, 35, 874-885.	1.1	140
7	Reliability of clinical guidelines in the detection of patients at risk following mild head injury: results of a prospective study. Journal of Neurosurgery, 2004, 100, 825-834.	1.6	128
8	Molecular Diagnosis of Diffuse Gliomas through Sequencing of Cell-Free Circulating Tumor DNA from Cerebrospinal Fluid. Clinical Cancer Research, 2018, 24, 2812-2819.	7.0	128
9	Interhemispheric supratentorial intracranial pressure gradients in head-injured patients: are they clinically important?. Journal of Neurosurgery, 1999, 90, 16-26.	1.6	122
10	Hippocampal head atrophy after traumatic brain injury. Neuropsychologia, 2006, 44, 1956-1961.	1.6	118
11	Reappraisal of the intracranial pressure and cerebrospinal fluid dynamics in patients with the so-called ?Normal pressure hydrocephalus? syndrome. Acta Neurochirurgica, 1991, 112, 50-61.	1.7	108
12	Monitoring intracranial pressure in patients with malignant middle cerebral artery infarction: is it useful?. Journal of Neurosurgery, 2010, 112, 648-657.	1.6	103
13	Influence of APOE polymorphism on cognitive and behavioural outcome in moderate and severe traumatic brain injury. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 77, 1191-1193.	1.9	101
14	Ventricular Enlargement after Moderate or Severe Head Injury: A Frequent and Neglected Problem. Journal of Neurotrauma, 2005, 22, 1303-1310.	3.4	81
15	Moderate and severe traumatic brain injury induce early overexpression of systemic and brain gelatinases. Intensive Care Medicine, 2008, 34, 1384-1392.	8.2	77
16	Is the placement of shunts in patients with idiopathic normal pressure hydrocephalus worth the risk? Results of a study based on continuous monitoring of intracranial pressure. Journal of Neurosurgery, 2004, 100, 855-866.	1.6	69
17	Fiberoptic Intraparenchymal Brain Pressure Monitoring with the Camino V420 Monitor: Reflections on Our Experience in 163 Severely Head-Injured Patients. Journal of Neurotrauma, 2002, 19, 439-448.	3.4	67
18	Circulating tumour DNA from the cerebrospinal fluid allows the characterisation and monitoring of medulloblastoma. Nature Communications, 2020, 11, 5376.	12.8	67

#	Article	IF	CITATIONS
19	Functional and magnetic resonance imaging correlates of corpus callosum in normal pressure hydrocephalus before and after shunting. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 78, 395-398.	1.9	65
20	Quality of life and neurobehavioral changes in survivors of malignant middle cerebral artery infarction. Journal of Neurology, 2009, 256, 1126-1133.	3.6	65
21	Neuropsychological findings in congenital and acquired childhood hydrocephalus. Neuropsychology Review, 2001, 11, 169-178.	4.9	64
22	Chiari Malformation Type I: A Case-Control Association Study of 58 Developmental Genes. PLoS ONE, 2013, 8, e57241.	2.5	61
23	MRlâ€based Morphometric Analysis of Posterior Cranial Fossa in the Diagnosis of Chiari Malformation Type I. Journal of Neuroimaging, 2014, 24, 250-256.	2.0	57
24	Decompressive craniectomy in traumatic brain injury after the DECRA trial. Where do we stand?. Current Opinion in Critical Care, 2013, 19, 101-106.	3.2	53
25	INTRA-ABDOMINAL PRESSURE. Neurosurgery, 2008, 62, 143-150.	1.1	51
26	Nitric Oxide Synthase Inhibition with the Antipterin VAS203 Improves Outcome in Moderate and Severe Traumatic Brain Injury: A Placebo-Controlled Randomized Phase IIa Trial (NOSTRA). Journal of Neurotrauma, 2014, 31, 1599-1606.	3.4	50
27	Cognitive and motor improvement after retesting in normal-pressure hydrocephalus: a real change or merely a learning effect?. Journal of Neurosurgery, 2010, 112, 399-409.	1.6	47
28	Neuropsychological Correlates of Basal Ganglia and Medial Temporal Lobe NAA/Cho Reductions in Traumatic Brain Injury. Archives of Neurology, 2004, 61, 541.	4.5	45
29	Idiopathic Normal Pressure Hydrocephalus: Results of a Prospective Cohort of 236 Shunted Patients. Acta Neurochirurgica Supplementum, 2012, 114, 247-253.	1.0	42
30	Diagnosis and treatment of Chiari malformation and syringomyelia in adults: international consensus document. Neurological Sciences, 2022, 43, 1327-1342.	1.9	42
31	Sulfonylurea Receptor 1 in Humans with Post-Traumatic Brain Contusions. Journal of Neurotrauma, 2015, 32, 1478-1487.	3.4	41
32	Posture-induced Changes in Intracranial Pressure: A Comparative Study in Patients with and without a Cerebrospinal Fluid Block at the Craniovertebral Junction. Neurosurgery, 2006, 58, 899-906.	1.1	40
33	Early ischaemia after severe head injury preliminary results in patients with diffuse brain injuries. Acta Neurochirurgica, 1993, 122, 204-214.	1.7	39
34	Normobaric Hyperoxia in Traumatic Brain Injury: Does Brain Metabolic State Influence the Response to Hyperoxic Challenge?. Journal of Neurotrauma, 2011, 28, 1139-1148.	3.4	39
35	Arterio-jugular differences of oxygen (AVDO2) for bedside assessment of CO2-reactivity and autoregulation in the acute phase of severe head injury. Acta Neurochirurgica, 1996, 138, 435-444.	1.7	38
36	Neuropsychological Outcome in Relation to the Traumatic Coma Data Bank Classification of Computed Tomography Imaging. Journal of Neurotrauma, 2001, 18, 869-879.	3.4	38

#	Article	IF	CITATIONS
37	Good outcome in patients with normal-pressure hydrocephalus and factors indicating poor prognosis. Journal of Neurosurgery, 2005, 103, 455-463.	1.6	36
38	Is intracranial pressure monitoring in the epidural space reliable? Fact and fiction. Journal of Neurosurgery, 2007, 106, 548-556.	1.6	36
39	Lactate and the Lactate-to-Pyruvate Molar Ratio Cannot Be Used as Independent Biomarkers for Monitoring Brain Energetic Metabolism: A Microdialysis Study in Patients with Traumatic Brain Injuries. PLoS ONE, 2014, 9, e102540.	2.5	36
40	Cognitive Disturbances and Neuropsychological Changes after Surgical Treatment in a Cohort of 185 Patients with Idiopathic Normal Pressure Hydrocephalus. Archives of Clinical Neuropsychology, 2012, 27, 304-317.	0.5	34
41	Influence of Extraneurological Insults on Ventricular Enlargement and Neuropsychological Functioning after Moderate and Severe Traumatic Brain Injury. Journal of Neurotrauma, 2004, 21, 864-876.	3.4	33
42	Influence of Angiotensin-Converting Enzyme Polymorphism on Neuropsychological Subacute Performance in Moderate and Severe Traumatic Brain Injury. Journal of Neuropsychiatry and Clinical Neurosciences, 2006, 18, 39-44.	1.8	33
43	Short-term medical management of hydrocephalus. Expert Opinion on Pharmacotherapy, 2005, 6, 1525-1538.	1.8	32
44	Sleep-Related Breathing Disorders in Chiari Malformation Type 1: A Prospective Study of 90 Patients. Sleep, 2017, 40, .	1.1	32
45	Postsurgical cerebral perfusion changes in idiopathic normal pressure hydrocephalus: a statistical parametric mapping study of SPECT images. Journal of Nuclear Medicine, 2003, 44, 1884-9.	5.0	31
46	Central versus Local Radiological Reading of Acute Computed Tomography Characteristics in Multi-Center Traumatic Brain Injury Research. Journal of Neurotrauma, 2019, 36, 1080-1092.	3.4	30
47	PupilometrÃa por infrarrojos. Descripción y fundamentos de la técnica y su aplicación en la monitorización no invasiva del paciente neurocrÃŧico. NeurologÃa, 2013, 28, 41-51.	0.7	28
48	Percutaneous Implantation of Cerebral Microdialysis Catheters by Twist-Drill Craniostomy in Neurocritical Patients: Description of the Technique and Results of a Feasibility Study in 97 Patients. Journal of Neurotrauma, 2006, 23, 1510-1517.	3.4	27
49	Diagnosis and treatment of Chiari malformation type 1 in children: the International Consensus Document. Neurological Sciences, 2022, 43, 1311-1326.	1.9	24
50	Alteraciones del sueño, un sÃndrome olvidado en los pacientes con malformación de Chiari tipo I. NeurologÃa, 2014, 29, 294-304.	0.7	23
51	Increased intracranial pressure in myelomeningocele (MMC) patients never shunted: Results of a prospective preliminary study. Spinal Cord, 2000, 38, 495-497.	1.9	22
52	Intravascular cooling for rapid induction of moderate hypothermia in severely head-injured patients: results of a multicenter study (IntraCool). Intensive Care Medicine, 2009, 35, 890-898.	8.2	22
53	Non-Invasive Estimation of Intracranial Pressure by Diffuse Optics: A Proof-of-Concept Study. Journal of Neurotrauma, 2020, 37, 2569-2579.	3.4	22
54	Differences in visual vs. verbal memory impairments as a result of focal temporal lobe damage in patients with traumatic brain injury. Brain Injury, 2006, 20, 1053-1059.	1.2	21

#	Article	IF	CITATIONS
55	Machine learning applied to neuroimaging for diagnosis of adult classic Chiari malformation: role of the basion as a key morphometric indicator. Journal of Neurosurgery, 2018, 129, 779-791.	1.6	21
56	Are evoked potentials clinically useful in the study of patients with Chiari malformation Type 1?. Journal of Neurosurgery, 2017, 126, 606-619.	1.6	20
57	Prospective study of methodological issues in intracranial pressure monitoring in patients with hydrocephalus. Journal of Neurosurgery, 2004, 100, 260-265.	1.6	17
58	Lack of utility of arteriojugular venous differences of lactate as a reliable indicator of increased brain anaerobic metabolism in traumatic brain injury. Journal of Neurosurgery, 2007, 106, 530-537.	1.6	17
59	Decreased cholecystokinin levels in cerebrospinal fluid of patients with adult chronic hydrocephalus syndrome. Biological Psychiatry, 1997, 41, 804-809.	1.3	16
60	Corpus callosum functioning in patients with normal pressure hydrocephalus before and after surgery. Journal of Neurology, 2006, 253, 625-630.	3.6	16
61	Does Normobaric Hyperoxia Cause Oxidative Stress in the Injured Brain? A Microdialysis Study Using 8-Iso-Prostaglandin F2α as a Biomarker. Journal of Neurotrauma, 2017, 34, 2731-2742.	3.4	16
62	Post-surgical changes in brain metabolism detected by magnetic resonance spectroscopy in normal pressure hydrocephalus: results of a pilot study. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 78, 760-763.	1.9	15
63	Intracranial pressure monitoring with the Neurodur-P epidural sensor: a prospective study in patients with adult hydrocephalus or idiopathic intracranial hypertension. Journal of Neurosurgery, 2008, 108, 934-942.	1.6	15
64	Moderate Hypothermia in the Management of Severe Traumatic Brain Injury: A Good Idea Proved Ineffective?. Current Pharmaceutical Design, 2004, 10, 2193-2204.	1.9	15
65	Brain Microdialysis as a Tool To Explore the Ionic Profile of the Brain Extracellular Space in Neurocritical Patients: A Methodological Approach and Feasibility Study. Journal of Neurotrauma, 2015, 32, 7-16.	3.4	14
66	Neuropeptide Y cerebrospinal fluid levels in patients with normal pressure hydrocephalus syndrome. Biological Psychiatry, 1994, 36, 61-63.	1.3	13
67	Cortical Spreading Depression Phenomena Are Frequent in Ischemic and Traumatic Penumbra: A Prospective Study in Patients With Traumatic Brain Injury and Large Hemispheric Ischemic Stroke. Journal of Clinical Neurophysiology, 2021, 38, 47-55.	1.7	13
68	Cephalometric oropharynx and oral cavity analysis in Chiari malformation Type I: a retrospective case-control study. Journal of Neurosurgery, 2017, 126, 626-633.	1.6	12
69	A Conditional Inference Tree Model for Predicting Sleep-Related Breathing Disorders in Patients With Chiari Malformation Type 1: Description and External Validation. Journal of Clinical Sleep Medicine, 2019, 15, 89-99.	2.6	12
70	Rare functional genetic variants in COL7A1, COL6A5, COL1A2 and COL5A2 frequently occur in Chiari Malformation Type 1. PLoS ONE, 2021, 16, e0251289.	2.5	12
71	Brainstem Auditory and Somatosensory Evoked Potentials in Relation to Clinical and Neuroimaging Findings in Chiari Type 1 Malformation. Journal of Clinical Neurophysiology, 2015, 32, 130-138.	1.7	11
72	Reappraisal of the reference levels for energy metabolites in the extracellular fluid of the human brain. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2742-2755.	4.3	11

#	Article	IF	Citations
73	Kir6.2, the Pore-Forming Subunit of ATP-Sensitive K ⁺ Channels, Is Overexpressed in Human Posttraumatic Brain Contusions. Journal of Neurotrauma, 2019, 36, 165-175.	3.4	11
74	Characterization of the Ionic Profile of the Extracellular Space of the Injured and Ischemic Brain: A Microdialysis Study. Journal of Neurotrauma, 2017, 34, 74-85.	3.4	8
75	The Sport Concussion Assessment Tool (SCAT2) for evaluating civilian mild traumatic brain injury. A pilot normative study. PLoS ONE, 2019, 14, e0212541.	2.5	8
76	Reduced hippocampal subfield volumes and memory performance in preterm children with and without germinal matrix-intraventricular hemorrhage. Scientific Reports, 2021, 11, 2420.	3.3	8
77	Neuroprotection in Malignant MCA Infarction. Cerebrovascular Diseases, 2006, 21, 99-105.	1.7	7
78	Paroxysmal cervicobrachial cough-induced pain in a patient with syringomyelia extending into spinal cord posterior gray horns. Journal of Neurology, 2007, 254, 678-681.	3.6	7
79	Is Spreading Depolarization a Risk Factor for Late Epilepsy? A Prospective Study in Patients with Traumatic Brain Injury and Malignant Ischemic Stroke Undergoing Decompressive Craniectomy. Neurocritical Care, 2021, 34, 876-888.	2.4	6
80	Considerations in the Use of Gravitational Valves in the Management of Hydrocephalus. Some Lessons Learned with the Dual-Switch Valve. Journal of Clinical Medicine, 2021, 10, 246.	2.4	6
81	Interside Latency Differences in Brainstem Auditory and Somatosensory Evoked Potentials. Defining Upper Limits to Determine Asymmetry. Journal of Clinical Neurophysiology, 2015, 32, 424-427.	1.7	5
82	Head circumference: The forgotten tool for hydrocephalus management. A reference interval study in the Spanish population. Clinical Neurology and Neurosurgery, 2013, 115, 2382-2387.	1.4	4
83	Target location after deep cerebral biopsies using low-volume air injection in 75 patients. Results and technical note. Acta Neurochirurgica, 2017, 159, 1939-1946.	1.7	4
84	Neurodevelopmental profile in children with benign external hydrocephalus syndrome. A pilot cohort study. Child's Nervous System, 2021, 37, 2799-2806.	1.1	4
85	To Shunt or Not to Shunt Patients with Idiopathic Normal Pressure Hydrocephalus? A Reappraisal of an Old Question. Journal of Clinical Medicine, 2020, 9, 4120.	2.4	4
86	How to Choose a Shunt for Patients with Normal Pressure Hydrocephalus: A Short Guide to Selecting the Best Shunt Assembly. Journal of Clinical Medicine, 2021, 10, 1210.	2.4	3
87	Angiotensin I converting enzyme polymorphism effects in patients with normal pressure hydrocephalus syndrome before and after surgery. Journal of Neurology, 2005, 252, 191-196.	3.6	2
88	Normal Hypocretin-1 (Orexin A) Levels in Cerebrospinal Fluid in Patients with Idiopathic Intracranial Hypertension. Acta Neurochirurgica Supplementum, 2012, 114, 221-225.	1.0	2
89	Cognitive event-related brain potentials (P300) in patients with normal pressure hydrocephalus. Results of a prospective study. NeurologÃa (English Edition), 2010, 25, 32-39.	0.4	1
90	Brain activation during speech perception in a patient with a massive left hemisphere infarction. Brain Injury, 2013, 27, 1470-1474.	1,2	1

#	Article	IF	CITATIONS
91	Brainstem auditory and somatosensory evoked potentials: a methodological study to evaluate the reproducibility of two devices. Physiological Measurement, 2014, 35, N51-N63.	2.1	1
92	Alteraciones neuropsicológicas y hallazgos neurorradiológicos en pacientes con conmoción cerebral postraumática. Resultados de un estudio piloto. NeurologÃa, 2018, 33, 427-437.	0.7	1
93	Neuropsychological alterations and neuroradiological findings in patients with post-traumatic concussion: results of a pilot study. NeurologÃa (English Edition), 2018, 33, 427-437.	0.4	1
94	CO2-induced intracranial hypertension and high-amplitude B-waves in a patient with Chiari 1 malformation and sleep apnea syndrome that resolved following CPAP therapy. Acta Neurochirurgica, 2021, 163, 3075-3082.	1.7	1
95	Distal catheter lengthening in pediatric patients with hydrocephalus using a guidewire-assisted technique. Child's Nervous System, 2020, 36, 2733-2740.	1.1	О
96	Brain Microdialysis Monitoring., 2021,, 91-111.		0
97	Non-invasive estimation of intracranial pressure by diffuse correlation spectroscopy., 2020,,.		0