
Andreas S Thum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4229993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The complete connectome of a learning and memory centre in an insect brain. Nature, 2017, 548, 175-182.	27.8	424
2	The Neural Substrate of Spectral Preference in Drosophila. Neuron, 2008, 60, 328-342.	8.1	274
3	The Role of Dopamine in Drosophila Larval Classical Olfactory Conditioning. PLoS ONE, 2009, 4, e5897.	2.5	168
4	Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila. Nature Communications, 2018, 9, 1104.	12.8	113
5	Recurrent architecture for adaptive regulation of learning in the insect brain. Nature Neuroscience, 2020, 23, 544-555.	14.8	108
6	Multiple Memory Traces for Olfactory Reward Learning in <i>Drosophila</i> . Journal of Neuroscience, 2007, 27, 11132-11138.	3.6	104
7	Four Individually Identified Paired Dopamine Neurons Signal Reward in Larval Drosophila. Current Biology, 2016, 26, 661-669.	3.9	96
8	Distinct Roles for Two Histamine Receptors (<i>hclA</i> and <i>hclB</i>) at the <i>Drosophila</i> Photoreceptor Synapse. Journal of Neuroscience, 2008, 28, 7250-7259.	3.6	84
9	<i>Drosophila</i> Larvae Establish Appetitive Olfactory Memories via Mushroom Body Neurons of Embryonic Origin. Journal of Neuroscience, 2010, 30, 10655-10666.	3.6	83
10	The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function. PLoS ONE, 2012, 7, e47518.	2.5	72
11	A behavior-based circuit model of how outcome expectations organize learned behavior in larval <i>Drosophila</i> . Learning and Memory, 2011, 18, 639-653.	1.3	71
12	The Role of octopamine and tyramine in <i>Drosophila</i> larval locomotion. Journal of Comparative Neurology, 2012, 520, 3764-3785.	1.6	69
13	Differential potencies of effector genes in adultDrosophila. Journal of Comparative Neurology, 2006, 498, 194-203.	1.6	65
14	Connectomics and function of a memory network: the mushroom body of larval Drosophila. Current Opinion in Neurobiology, 2019, 54, 146-154.	4.2	65
15	Characterization of the octopaminergic and tyraminergic neurons in the central brain of <i>Drosophila</i> larvae. Journal of Comparative Neurology, 2014, 522, 3485-3500.	1.6	61
16	The Ol1mpiad: concordance of behavioural faculties of stage 1 and stage 3 <i>Drosophila</i> larvae. Journal of Experimental Biology, 2017, 220, 2452-2475.	1.7	48
17	Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae. PLoS Genetics, 2016, 12, e1006378.	3.5	45
18	The neuronal and molecular basis of quinine-dependent bitter taste signaling in Drosophila larvae. Frontiers in Behavioral Neuroscience, 2014, 8, 6.	2.0	44

ANDREAS S THUM

#	Article	IF	CITATIONS
19	Odor-taste learning in Drosophila larvae. Journal of Insect Physiology, 2018, 106, 47-54.	2.0	43
20	Nutritional Value-Dependent and Nutritional Value-Independent Effects on Drosophila melanogaster Larval Behavior. Chemical Senses, 2012, 37, 711-721.	2.0	41
21	Consolidated and Labile Odor Memory Are Separately Encoded within the <i>Drosophila</i> Brain. Journal of Neuroscience, 2012, 32, 17163-17171.	3.6	38
22	Capacity of visual classical conditioning in Drosophila larvae Behavioral Neuroscience, 2011, 125, 921-929.	1.2	36
23	Electric Shock-Induced Associative Olfactory Learning in Drosophila Larvae. Chemical Senses, 2010, 35, 335-346.	2.0	34
24	Reward signaling in a recurrent circuit of dopaminergic neurons and peptidergic Kenyon cells. Nature Communications, 2019, 10, 3097.	12.8	34
25	Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae. PLoS ONE, 2017, 12, e0181865.	2.5	33
26	Taste processing in Drosophila larvae. Frontiers in Integrative Neuroscience, 2015, 9, 50.	2.1	32
27	Circuits for integrating learned and innate valences in the insect brain. ELife, 2021, 10, .	6.0	29
28	Caffeine Taste Signaling in Drosophila Larvae. Frontiers in Cellular Neuroscience, 2016, 10, 193.	3.7	28
29	Mushroom body miscellanea: transgenic Drosophila strains expressing anatomical and physiological sensor proteins in Kenyon cells. Frontiers in Neural Circuits, 2013, 7, 147.	2.8	27
30	Neuropeptide F neurons modulate sugar reward during associative olfactory learning of <i>Drosophila</i> larvae. Journal of Comparative Neurology, 2015, 523, 2637-2664.	1.6	27
31	Drosophila melanogaster cloak their eggs with pheromones, which prevents cannibalism. PLoS Biology, 2019, 17, e2006012.	5.6	27
32	Diversity, variability, and suboesophageal connectivity of antennal lobe neurons in <i>D. melanogaster</i> larvae. Journal of Comparative Neurology, 2011, 519, 3415-3432.	1.6	25
33	Appetitive Associative Olfactory Learning in Drosophila Larvae. Journal of Visualized Experiments, 2013, , .	0.3	25
34	Identification of Dopaminergic Neurons That Can Both Establish Associative Memory and Acutely Terminate Its Behavioral Expression. Journal of Neuroscience, 2020, 40, 5990-6006.	3.6	25
35	A map of sensilla and neurons in the taste system of <i>drosophila</i> larvae. Journal of Comparative Neurology, 2017, 525, 3865-3889.	1.6	20
36	Composition of agarose substrate affects behavioral output of Drosophila larvae. Frontiers in Behavioral Neuroscience, 2014, 8, 11.	2.0	19

ANDREAS S THUM

#	Article	IF	CITATIONS
37	Reversal learning in <i>Drosophila</i> larvae. Learning and Memory, 2019, 26, 424-435.	1.3	19
38	Synchronous and opponent thermosensors use flexible cross-inhibition to orchestrate thermal homeostasis. Science Advances, 2021, 7, .	10.3	16
39	Controlling the behaviour of Drosophila melanogaster via smartphone optogenetics. Scientific Reports, 2020, 10, 17614.	3.3	13
40	Ethanol-guided behavior in Drosophila larvae. Scientific Reports, 2021, 11, 12307.	3.3	10
41	larvalign: Aligning Gene Expression Patterns from the Larval Brain of Drosophila melanogaster. Neuroinformatics, 2018, 16, 65-80.	2.8	8
42	Immediate and punitive impact of mechanosensory disturbance on olfactory behaviour of larval Drosophila. Biology Open, 2014, 3, 1005-1010.	1.2	6
43	Spatial-data-driven layouting for brain network visualization. Computers and Graphics, 2022, 105, 12-24.	2.5	5
44	Maggot Instructor: Semi-Automated Analysis of Learning and Memory in Drosophila Larvae. Frontiers in Psychology, 2018, 9, 1010.	2.1	4
45	MEK inhibitor cobimetinib rescues a dR af mutant lethal phenotype in Drosophila melanogaster. Experimental Dermatology, 2019, 28, 1079-1082.	2.9	1
46	Food restriction reconfigures naÃ⁻ve and learned choice behavior in Drosophila larvae. Journal of Neurogenetics, 2020, 34, 123-132.	1.4	1
47	Neuropeptide F neurons modulate sugar reward during associative olfactory learning ofDrosophilalarvae. Journal of Comparative Neurology, 2015, 523, Spc1-Spc1.	1.6	Ο
48	Connectomics: Arrested Development. Current Biology, 2019, 29, R90-R92.	3.9	0