Judith Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4229247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dietary protein supplementation results in molecular and cellular changes related to T helper type 2 immunity in the lung and small intestine in lactating rats re-infected with <i>Nippostrongylus brasiliensis</i> . Parasitology, 2022, 149, 337-346.	1.5	1
2	Neutrophils: Friend or foe in Filariasis?. Parasite Immunology, 2022, 44, e12918.	1.5	3
3	Surgical adhesions: A sticky macrophage problem. Science, 2021, 371, 993-994.	12.6	7
4	The magnitude of airway remodeling is not altered by distinct allergic inflammatory responses in BALB/c <i>versus</i> C57BL/6 mice but matrix composition differs. Immunology and Cell Biology, 2021, 99, 640-655.	2.3	12
5	IL-13 is a driver of COVID-19 severity. JCI Insight, 2021, 6, .	5.0	80
6	The expanding world of tissueâ€resident macrophages. European Journal of Immunology, 2021, 51, 1882-1896.	2.9	51
7	IL-13 deficiency exacerbates lung damage and impairs epithelial-derived type 2 molecules during nematode infection. Life Science Alliance, 2021, 4, e202001000.	2.8	14
8	Trichuris muris infection drives cell-intrinsic IL4R alpha independent colonic RELMα+ macrophages. PLoS Pathogens, 2021, 17, e1009768.	4.7	6
9	Recruitment of dendritic cell progenitors to foci of influenza A virus infection sustains immunity. Science Immunology, 2021, 6, eabi9331.	11.9	14
10	Resistance to parasites: Lessons for type 2 immunity. Seminars in Immunology, 2021, , 101539.	5.6	0
11	Zebrafish IL-4–like Cytokines and IL-10 Suppress Inflammation but Only IL-10 Is Essential for Gill Homeostasis. Journal of Immunology, 2020, 205, 994-1008.	0.8	36
12	The immune response of inbred laboratory mice to <i>Litomosoides sigmodontis</i> : A route to discovery in myeloid cell biology. Parasite Immunology, 2020, 42, e12708.	1.5	29
13	IL-17A both initiates, via IFNÎ ³ suppression, and limits the pulmonary type-2 immune response to nematode infection. Mucosal Immunology, 2020, 13, 958-968.	6.0	42
14	Activation of the NLRP3 Inflammasome by Particles from the Echinococcus granulosus Laminated Layer. Infection and Immunity, 2020, 88, .	2.2	7
15	Eosinophil Deficiency Promotes Aberrant Repair and Adverse Remodeling Following Acute Myocardial Infarction. JACC Basic To Translational Science, 2020, 5, 665-681.	4.1	46
16	Inflammasome-Independent Role for NLRP3 in Controlling Innate Antihelminth Immunity and Tissue Repair in the Lung. Journal of Immunology, 2019, 203, 2724-2734.	0.8	20
17	Enhanced monocyte recruitment and delayed alternative macrophage polarization accompanies impaired repair following myocardial infarction in C57BL/6 compared to BALB/c mice. Clinical and Experimental Immunology, 2019, 198, 83-93.	2.6	12
18	Crystal-clear treatment for allergic disease. Science, 2019, 364, 738-739.	12.6	34

#	Article	IF	CITATIONS
19	Extent of Ischemic Brain Injury After Thrombotic Stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq1 1	0.78431 2.0	4 _{.1} gBT /Ove
20	Comparative genomics of the major parasitic worms. Nature Genetics, 2019, 51, 163-174.	21.4	377
21	Particles from the Echinococcus granulosus Laminated Layer Inhibit CD40 Upregulation in Dendritic Cells by Interfering with Akt Activation. Infection and Immunity, 2019, 87, .	2.2	9
22	The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages. Immunity, 2018, 48, 75-90.e6.	14.3	185
23	Ym1 induces RELMα and rescues IL-4Rα deficiency in lung repair during nematode infection. PLoS Pathogens, 2018, 14, e1007423.	4.7	56
24	Body Protein Reserves Sustain Maternal Performance in Early Lactation but Dietary Protein Is Necessary to Maintain Performance and Immune Responses to Nippostrongylus brasiliensis in Lactating Rats. Journal of Nutrition, 2018, 148, 1638-1646.	2.9	4
25	Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. Journal of Experimental Medicine, 2018, 215, 1507-1518.	8.5	272
26	Myeloid cell recruitment versus local proliferation differentiates susceptibility from resistance to filarial infection. ELife, 2018, 7, .	6.0	41
27	Interleukin-4 activated macrophages mediate immunity to filarial helminth infection by sustaining CCR3-dependent eosinophilia. PLoS Pathogens, 2018, 14, e1006949.	4.7	40
28	Local amplifiers of IL-4Rα–mediated macrophage activation promote repair in lung and liver. Science, 2017, 356, 1076-1080.	12.6	163
29	Interleukin 4 promotes the development of ex-Foxp3 Th2 cells during immunity to intestinal helminths. Journal of Experimental Medicine, 2017, 214, 1809-1826.	8.5	42
30	Eâ€Eosinophils have an essential role in cardiac repair following myocardial infarction. Heart, 2017, 103, A152-A152.	2.9	6
31	The Silent Undertakers: Macrophages Programmed for Efferocytosis. Immunity, 2017, 47, 810-812.	14.3	13
32	Tissue-specific contribution of macrophages to wound healing. Seminars in Cell and Developmental Biology, 2017, 61, 3-11.	5.0	342
33	Macrophage origin limits functional plasticity in helminth-bacterial co-infection. PLoS Pathogens, 2017, 13, e1006233.	4.7	39
34	Microbiota, parasites and immunity. Parasite Immunology, 2016, 38, 3-4.	1.5	1
35	Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nature Communications, 2016, 7, 12651.	12.8	92
36	Particles from the Echinococcus granulosus laminated layer inhibit IL-4 and growth factor-driven Akt phosphorylation and proliferative responses in macrophages. Scientific Reports, 2016, 6, 39204.	3.3	21

#	Article	IF	CITATIONS
37	Beyond killing. Evolution, Medicine and Public Health, 2016, 2016, 148-157.	2.5	87
38	ILâ€33 delivery induces serous cavity macrophage proliferation independent of interleukinâ€4 receptor alpha. European Journal of Immunology, 2016, 46, 2311-2321.	2.9	31
39	Pharmacological inhibition of PI3K class III enhances the production of pro- and anti-inflammatory cytokines in dendritic cells stimulated by TLR agonists. International Immunopharmacology, 2016, 36, 213-217.	3.8	10
40	The IL-4/STAT6 signaling axis establishes a conserved microRNA signature in human and mouse macrophages regulating cell survival via miR-342-3p. Genome Medicine, 2016, 8, 63.	8.2	35
41	Increased exposure to <i>Plasmodium chabaudi</i> antigens sustains cross-reactivity and avidity of antibodies binding <i>Nippostrongylus brasiliensis</i> : dissecting cross-phylum cross-reactivity in a rodent model. Parasitology, 2015, 142, 1703-1714.	1.5	3
42	Bottomâ€up regulation of malaria population dynamics in mice coâ€infected with lungâ€migratory nematodes. Ecology Letters, 2015, 18, 1387-1396.	6.4	24
43	Nutritional regulation of resistance to Nippostrongylus brasiliensis re-infection in lactating rats. Proceedings of the Nutrition Society, 2015, 74, .	1.0	0
44	Down Regulation of the TCR Complex CD3ζ-Chain on CD3+ T Cells: A Potential Mechanism for Helminth-Mediated Immune Modulation. Frontiers in Immunology, 2015, 6, 51.	4.8	14
45	Modulation of dendritic cell alternative activation and function by the vitamin A metabolite retinoic acid. International Immunology, 2015, 27, 589-596.	4.0	8
46	Interleukin-4 Receptor α Signaling in Myeloid Cells Controls Collagen Fibril Assembly in Skin Repair. Immunity, 2015, 43, 803-816.	14.3	250
47	The adult murine heart has a sparse, phagocytically active macrophage population that expands through monocyte recruitment and adopts an †M2' phenotype in response to Th2 immunologic challenge. Immunobiology, 2015, 220, 924-933.	1.9	43
48	Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma. Current Biology, 2015, 25, 577-588.	3.9	96
49	Inflammation-induced formation of fat-associated lymphoid clusters. Nature Immunology, 2015, 16, 819-828.	14.5	175
50	IL-17 and neutrophils: unexpected players in the type 2 immune response. Current Opinion in Immunology, 2015, 34, 99-106.	5.5	70
51	The laminated layer: Recent advances and insights into Echinococcus biology and evolution. Experimental Parasitology, 2015, 158, 23-30.	1.2	36
52	A dominant role for the methyl-CpG-binding protein Mbd2 in controlling Th2 induction by dendritic cells. Nature Communications, 2015, 6, 6920.	12.8	87
53	The Secreted Triose Phosphate Isomerase of Brugia malayi Is Required to Sustain Microfilaria Production In Vivo. PLoS Pathogens, 2014, 10, e1003930.	4.7	22
54	Macrophage proliferation, provenance, and plasticity in macroparasite infection. Immunological Reviews, 2014, 262, 113-133.	6.0	80

#	Article	IF	CITATIONS
55	Unconventional Maturation of Dendritic Cells Induced by Particles from the Laminated Layer of Larval Echinococcus granulosus. Infection and Immunity, 2014, 82, 3164-3176.	2.2	40
56	Chitinase-like proteins promote IL-17-mediated neutrophilia in a tradeoff between nematode killing and host damage. Nature Immunology, 2014, 15, 1116-1125.	14.5	187
57	Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 2014, 41, 339-340.	14.3	53
58	Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science, 2014, 345, 578-582.	12.6	238
59	Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 2014, 41, 14-20.	14.3	4,638
60	Host protective roles of type 2 immunity: Parasite killing and tissue repair, flip sides of the same coin. Seminars in Immunology, 2014, 26, 329-340.	5.6	198
61	Pathogenesis of Helminth Infections. , 2014, , 347-359.		0
62	Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood, 2014, 123, e110-e122.	1.4	299
63	Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nature Reviews Immunology, 2013, 13, 607-614.	22.7	396
64	Alternative activation of macrophages by filarial nematodes is MyD88-independent. Immunobiology, 2013, 218, 570-578.	1.9	7
65	Sources of heterogeneity in human monocyte subsets. Immunology Letters, 2013, 152, 32-41.	2.5	69
66	Beyond Stem Cells: Self-Renewal of Differentiated Macrophages. Science, 2013, 342, 1242974.	12.6	408
67	Tissue-resident macrophages. Nature Immunology, 2013, 14, 986-995.	14.5	1,621
68	IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. Journal of Experimental Medicine, 2013, 210, 2477-2491.	8.5	337
69	Quantifying variation in the potential for antibody-mediated apparent competition among nine genotypes of the rodent malaria parasite Plasmodium chabaudi. Infection, Genetics and Evolution, 2013, 20, 270-275.	2.3	16
70	Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nature Communications, 2013, 4, 1886.	12.8	261
71	Chitinase 3-Like 1 Protein Levels Are Elevated in Schistosoma haematobium Infected Children. PLoS Neglected Tropical Diseases, 2012, 6, e1898.	3.0	19
72	Deletion of Parasite Immune Modulatory Sequences Combined with Immune Activating Signals Enhances Vaccine Mediated Protection against Filarial Nematodes. PLoS Neglected Tropical Diseases, 2012, 6, e1968.	3.0	26

Judith Allen

#	Article	IF	CITATIONS
73	Alternatively activated dendritic cells regulate CD4 ⁺ T-cell polarization in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9977-9982.	7.1	105
74	Induction of IL-4Rα–dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4–driven murine macrophage proliferation in vivo. Blood, 2012, 120, 2307-2316.	1.4	162
75	The biology of nematode- and IL4Rα-dependent murine macrophage polarization in vivo as defined by RNA-Seq and targeted lipidomics. Blood, 2012, 120, e93-e104.	1.4	52
76	Over expression of IL-10 by macrophages overcomes resistance to murine filariasis. Experimental Parasitology, 2012, 132, 90-96.	1.2	14
77	Conditional deletion of Stat3 in mammary epithelium impairs the acute phase response and modulates immune cell numbers during postâ€lactational regression. Journal of Pathology, 2012, 227, 106-117.	4.5	91
78	Harnessing evolutionary biology to combat infectious disease. Nature Medicine, 2012, 18, 217-220.	30.7	23
79	Future prospects and challenges of vaccines against filariasis. Parasite Immunology, 2012, 34, 243-253.	1.5	39
80	Investigating Co-infection Dynamics through Evolution of Bio-PEPA Model Parameters: A Combined Process Algebra and Evolutionary Computing Approach. Lecture Notes in Computer Science, 2012, , 227-246.	1.3	5
81	Candidate innate immune system gene expression in the ecological model Daphnia. Developmental and Comparative Immunology, 2011, 35, 1068-1077.	2.3	20
82	Local Macrophage Proliferation, Rather than Recruitment from the Blood, Is a Signature of T _H 2 Inflammation. Science, 2011, 332, 1284-1288.	12.6	1,186
83	Interactive effects of protein nutrition, genetic growth potential and <i>Heligmosomoides bakeri</i> infection pressure on resilience and resistance in mice. Parasitology, 2011, 138, 1305-1315.	1.5	9
84	Diversity and dialogue in immunity to helminths. Nature Reviews Immunology, 2011, 11, 375-388.	22.7	697
85	Understanding the laminated layer of larval Echinococcus II: immunology. Trends in Parasitology, 2011, 27, 264-273.	3.3	88
86	The economy of inflammation: when is less more?. Trends in Parasitology, 2011, 27, 382-387.	3.3	116
87	Analyzing Airway Inflammation with Chemical Biology: Dissection of Acidic Mammalian Chitinase Function with a Selective Drug-like Inhibitor. Chemistry and Biology, 2011, 18, 569-579.	6.0	44
88	Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function. Journal of Leukocyte Biology, 2011, 90, 845-854.	3.3	179
89	Th2 Responses to Helminth Parasites Can Be Therapeutically Enhanced by, but Are Not Dependent upon, GITR–CITR Ligand Costimulation In Vivo. Journal of Immunology, 2011, 187, 1411-1420.	0.8	20
90	Eosinophils Forestall Obesity. Science, 2011, 332, 186-187.	12.6	21

#	Article	IF	CITATIONS
91	Evolution of Th2 Immunity: A Rapid Repair Response to Tissue Destructive Pathogens. PLoS Pathogens, 2011, 7, e1002003.	4.7	277
92	Antibody isotype analysis of malaria-nematode co-infection: problems and solutions associated with cross-reactivity. BMC Immunology, 2010, 11, 6.	2.2	24
93	Similarity and Diversity in Macrophage Activation by Nematodes, Trematodes, and Cestodes. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-14.	3.0	74
94	Filarial Parasites Develop Faster and Reproduce Earlier in Response to Host Immune Effectors That Determine Filarial Life Expectancy. PLoS Biology, 2010, 8, e1000525.	5.6	73
95	Alternatively Activated Macrophages Elicited by Helminth Infection Can Be Reprogrammed to Enable Microbial Killing. Journal of Immunology, 2009, 182, 3084-3094.	0.8	120
96	MIF homologues from a filarial nematode parasite synergize with IL-4 to induce alternative activation of host macrophages. Journal of Leukocyte Biology, 2009, 85, 844-854.	3.3	71
97	Plasmodium chabaudi limits early Nippostrongylus brasiliensis-induced pulmonary immune activation and Th2 polarization in co-infected mice. BMC Immunology, 2009, 10, 60.	2.2	25
98	Early recruitment of natural CD4 ⁺ Foxp3 ⁺ Treg cells by infective larvae determines the outcome of filarial infection. European Journal of Immunology, 2009, 39, 192-206.	2.9	114
99	Chitinases and chitinaseâ€like proteins: potential therapeutic targets for the treatment of Tâ€helper type 2 allergies. Clinical and Experimental Allergy, 2009, 39, 943-955.	2.9	80
100	Animal models of airway inflammation and airway smooth muscle remodelling in asthma. Pulmonary Pharmacology and Therapeutics, 2009, 22, 455-465.	2.6	26
101	Experimental manipulation of immune-mediated disease and its fitness costs for rodent malaria parasites. BMC Evolutionary Biology, 2008, 8, 128.	3.2	41
102	Litomosoides sigmodontis: Vaccine-induced immune responses against Wolbachia surface protein can enhance the survival of filarial nematodes during primary infection. Experimental Parasitology, 2008, 118, 285-289.	1.2	10
103	Blockade of TNF receptor 1 reduces disease severity but increases parasite transmission during Plasmodium chabaudi chabaudi infection. International Journal for Parasitology, 2008, 38, 1073-1081.	3.1	31
104	Murine gammaherpesvirus-induced fibrosis is associated with the development of alternatively activated macrophages. Journal of Leukocyte Biology, 2008, 84, 50-58.	3.3	43
105	Does <i>Litomosoides sigmodontis</i> synthesize dimethylethanolamine from choline?. Parasitology, 2008, 135, 55-61.	1.5	4
106	Of Mice, Cattle, and Humans: The Immunology and Treatment of River Blindness. PLoS Neglected Tropical Diseases, 2008, 2, e217.	3.0	103
107	Alternative Activation Is an Innate Response to Injury That Requires CD4+ T Cells to be Sustained during Chronic Infection. Journal of Immunology, 2007, 179, 3926-3936.	0.8	230
108	CTLA-4 and CD4+CD25+ Regulatory T Cells Inhibit Protective Immunity to Filarial Parasites In Vivo. Journal of Immunology, 2007, 179, 4626-4634.	0.8	113

#	Article	IF	CITATIONS
109	Draft Genome of the Filarial Nematode Parasite <i>Brugia malayi</i> . Science, 2007, 317, 1756-1760.	12.6	571
110	Mapping immune response profiles: The emerging scenario from helminth immunology. European Journal of Immunology, 2007, 37, 3319-3326.	2.9	128
111	Parasite genetic diversity does not influence TNF-mediated effects on the virulence of primary rodent malaria infections. Parasitology, 2006, 133, 673.	1.5	20
112	Vaccination against filarial nematodes with irradiated larvae provides long-term protection against the third larval stage but not against subsequent life cycle stages. International Journal for Parasitology, 2006, 36, 903-914.	3.1	50
113	F4/80+ Alternatively Activated Macrophages Control CD4+ T Cell Hyporesponsiveness at Sites Peripheral to Filarial Infection. Journal of Immunology, 2006, 176, 6918-6927.	0.8	106
114	Simvastatin promotes Th2-type responses through the induction of the chitinase family member Ym1 in dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7777-7782.	7.1	109
115	Quantitative appraisal of murine filariasis confirms host strain differences but reveals that BALB/c females are more susceptible than males to Litomosoides sigmodontis. Microbes and Infection, 2005, 7, 612-618.	1.9	29
116	Co-infected C57BL/6 mice mount appropriately polarized and compartmentalized cytokine responses to Litomosoides sigmodontis and Leishmania major but disease progression is altered. Parasite Immunology, 2005, 27, 317-324.	1.5	29
117	Removal of Regulatory T Cell Activity Reverses Hyporesponsiveness and Leads to Filarial Parasite Clearance In Vivo. Journal of Immunology, 2005, 174, 4924-4933.	0.8	270
118	Chitinase and Fizz Family Members Are a Generalized Feature of Nematode Infection with Selective Upregulation of Ym1 and Fizz1 by Antigen-Presenting Cells. Infection and Immunity, 2005, 73, 385-394.	2.2	233
119	Malariaâ€Filaria Coinfection in Mice Makes Malarial Disease More Severe unless Filarial Infection Achieves Patency. Journal of Infectious Diseases, 2005, 191, 410-421.	4.0	137
120	Inducible costimulator is required for type 2 antibody isotype switching but not T helper cell type 2 responses in chronic nematode infection. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9872-9877.	7.1	21
121	Evolutionary Causes and Consequences of Immunopathology. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 373-397.	8.3	338
122	Both Free-Living and Parasitic Nematodes Induce a Characteristic Th2 Response That Is Dependent on the Presence of Intact Glycans. Infection and Immunity, 2004, 72, 398-407.	2.2	110
123	Most of the Response Elicited againstWolbachiaSurface Protein in Filarial Nematode Infection Is Due to the Infective Larval Stage. Journal of Infectious Diseases, 2004, 189, 120-127.	4.0	26
124	Helminth parasites – masters of regulation. Immunological Reviews, 2004, 201, 89-116.	6.0	761
125	Interferon Î ³ suppresses glucocorticoid augmentation of macrophage clearance of apoptotic cells. European Journal of Immunology, 2004, 34, 1752-1761.	2.9	44
126	Cytokine-dependent inflammatory cell recruitment patterns in the peritoneal cavity of mice exposed to the parasitic nematode Brugia malayi. Medical Microbiology and Immunology, 2003, 192, 33-40.	4.8	23

#	Article	IF	CITATIONS
127	Macrophages in chronic type 2 inflammation have a novel phenotype characterized by the abundant expression of Ym1 and Fizz1 that can be partly replicated in vitro. Immunology Letters, 2003, 85, 173-180.	2.5	207
128	IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunology, 2002, 3, 7.	2.2	290
129	Immunisation of mice against neosporosis. International Journal for Parasitology, 2002, 32, 867-876.	3.1	48
130	IL-4 is required to prevent filarial nematode development in resistant but not susceptible strains of mice. International Journal for Parasitology, 2002, 32, 1277-1284.	3.1	68
131	The FAR proteins of filarial nematodes: secretion, glycosylation and lipid binding characteristics. Molecular and Biochemical Parasitology, 2002, 122, 161-170.	1.1	50
132	Divergent roles for macrophages in lymphatic filariasis. Parasite Immunology, 2001, 23, 345-352.	1.5	66
133	A <i>Brugia malayi</i> Homolog of Macrophage Migration Inhibitory Factor Reveals an Important Link Between Macrophages and Eosinophil Recruitment During Nematode Infection. Journal of Immunology, 2001, 167, 5348-5354.	0.8	121
134	Requirements for in vivo IFN-Î ³ induction by live microfilariae of the parasitic nematode, Brugia malayi. Parasitology, 2000, 120, 631-640.	1.5	15
135	Antigen-presenting cells recruited byBrugia malayi induce Th2 differentiation of naÃ ⁻ ve CD4+ T cells. European Journal of Immunology, 2000, 30, 1127-1135.	2.9	93
136	Alternatively activated macrophages induced by nematode infection inhibit proliferation via cell-to-cell contact. European Journal of Immunology, 2000, 30, 2669-2678.	2.9	196
137	The Abundant Larval Transcript-1 and -2 Genes of Brugia malayi Encode Stage-Specific Candidate Vaccine Antigens for Filariasis. Infection and Immunity, 2000, 68, 4174-4179.	2.2	152
138	The Serpin Secreted by <i>Brugia malayi</i> Microfilariae, Bm-SPN-2, Elicits Strong, but Short-Lived, Immune Responses in Mice and Humans. Journal of Immunology, 2000, 165, 5161-5169.	0.8	61
139	Interleukin-5 Is Essential for Vaccine-Mediated Immunity but Not Innate Resistance to a Filarial Parasite. Infection and Immunity, 2000, 68, 2513-2517.	2.2	63
140	Analysis of Genes Expressed at the Infective Larval Stage Validates Utility of Litomosoides sigmodontis as a Murine Model for Filarial Vaccine Development. Infection and Immunity, 2000, 68, 5454-5458.	2.2	55
141	EVOLUTION AND IMMUNOLOGY: The Economics of Immunity. Science, 2000, 290, 1104-1105.	12.6	63
142	Immunology of Lymphatic Filariasis: Current Controversies. Tropical Medicine, 2000, , 217-243.	0.3	13
143	Suppressive Antigen-Presenting Cells in Helminth Infection. Pathobiology, 1999, 67, 265-268.	3.8	10
144	Comparative Analysis of Glycosylated and Nonglycosylated Filarial Homologues of the 20-Kilodalton Retinol Binding Protein from <i>Onchocerca volvulus</i> (Ov20). Infection and Immunity, 1999, 67, 6329-6334.	2.2	13

#	ARTICLE	IF	CITATIONS
145	Profound suppression of cellular proliferation mediated by the secretions of nematodes. Parasite Immunology, 1998, 20, 241-247.	1.5	103
146	Requirement for in vivo production of IL-4, but not IL-10, in the induction of proliferative suppression by filarial parasites. Journal of Immunology, 1998, 160, 4124-32.	0.8	35
147	Requirement for in vivo production of IL-4, but not IL-10, in the induction of proliferative suppression by filarial parasites. Journal of Immunology, 1998, 160, 1304-12.	0.8	36
148	Th1-Th2: Reliable paradigm or dangerous dogma?. Trends in Immunology, 1997, 18, 387-392.	7.5	281
149	Immunology of Human Helminth Infection. International Archives of Allergy and Immunology, 1996, 109, 3-10.	2.1	143
150	APC from mice harbouring the filarial nematode, Brugia malayi, prevent cellular proliferation but not cytokine production. International Immunology, 1996, 8, 143-151.	4.0	108
151	The gp15400 polyprotein antigen of Brugia malayi binds fatty acids and retinoids. Molecular and Biochemical Parasitology, 1995, 71, 41-50.	1.1	50
152	Fine specificity of the genetically controlled immune response to native and recombinant gp15/400 (polyprotein allergen) of Brugia malayi. Infection and Immunity, 1995, 63, 2892-2898.	2.2	20
153	Infection of IL-4-deficient mice with the parasitic nematode Brugia malayi demonstrates that host resistance is not dependent on a T helper 2-dominated immune response. Journal of Immunology, 1995, 154, 5995-6001.	0.8	61
154	Adult and microfilarial stages of the filarial parasite Brugia malayi stimulate contrasting cytokine and Ig isotype responses in BALB/c mice. Journal of Immunology, 1994, 153, 1216-24.	0.8	88
155	An intermolecular mechanism of T cell help for the production of antibodies to the bacterial pathogen,Chlamydia trachomatis. European Journal of Immunology, 1993, 23, 1169-1172.	2.9	27
156	A single peptide from the major outer membrane protein of Chlamydia trachomatis elicits T cell help for the production of antibodies to protective determinants. Journal of Immunology, 1991, 147, 674-9.	0.8	38
157	Cysteine-rich outer membrane proteins ofChlamydia trachomatisdisplay compensatory sequence changes between biovariants. Molecular Microbiology, 1990, 4, 1543-1550.	2.5	50
158	Identification by sequence analysis of two-site posttranslational processing of the cysteine-rich outer membrane protein 2 of Chlamydia trachomatis serovar L2. Journal of Bacteriology, 1989, 171, 285-291.	2.2	87
159	Macrophages in Helminth Infection: Effectors, Regulators, and Wound Healers. , 0, , 477-490.		0