Yu Jun Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4229195/publications.pdf Version: 2024-02-01

<u> Υιι Ιιινι Τανι</u>

#	Article	IF	CITATIONS
1	Harnessing the circular economy to develop sustainable soft robots. Science Robotics, 2022, 7, eabn8147.	17.6	6
2	Submerged and non-submerged 3D bioprinting approaches for the fabrication of complex structures with the hydrogel pair GelMA and alginate/methylcellulose. Additive Manufacturing, 2021, 37, 101640.	3.0	21
3	Progress and Roadmap for Intelligent Selfâ€Healing Materials in Autonomous Robotics. Advanced Materials, 2021, 33, e2002800.	21.0	75
4	Fully transient stretchable fruitâ€based battery as safe and environmentally friendly power source for wearable electronics. EcoMat, 2021, 3, e12073.	11.9	41
5	Scaling Metalâ€Elastomer Composites toward Stretchable Multiâ€Helical Conductive Paths for Robust Responsive Wearable Health Devices. Advanced Healthcare Materials, 2021, 10, e2100221.	7.6	18
6	Development of an Ultrastretchable Double-Network Hydrogel for Flexible Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 12814-12823.	8.0	97
7	A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Nature Materials, 2020, 19, 182-188.	27.5	183
8	Near–hysteresis-free soft tactile electronic skins for wearables and reliable machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25352-25359.	7.1	104
9	Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nature Communications, 2020, 11, 5747.	12.8	118
10	Super Tough and Self-Healable Poly(dimethylsiloxane) Elastomer via Hydrogen Bonding Association and Its Applications as Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2020, 12, 31975-31983.	8.0	47
11	A neuro-inspired artificial peripheral nervous system for scalable electronic skins. Science Robotics, 2019, 4, .	17.6	203
12	Wireless body sensor networks based on metamaterial textiles. Nature Electronics, 2019, 2, 243-251.	26.0	276
13	Highly conductive 3D metal-rubber composites for stretchable electronic applications. APL Materials, 2019, 7, .	5.1	22
14	Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing. Biofabrication, 2019, 11, 025011.	7.1	76
15	Self-healing electronic skins for aquatic environments. Nature Electronics, 2019, 2, 75-82.	26.0	424
16	Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding. ACS Applied Materials & Interfaces, 2018, 10, 11164-11174.	8.0	82
17	Self-Healing Electronic Materials for a Smart and Sustainable Future. ACS Applied Materials & Interfaces, 2018, 10, 15331-15345.	8.0	170
18	A low cost and flexible carbon nanotube pH sensor fabricated using aerosol jet technology for live cell applications. Sensors and Actuators B: Chemical, 2018, 260, 227-235.	7.8	62

Yu Jun Tan

#	Article	IF	CITATIONS
19	A strategy for strong interface bonding by 3D bioprinting of oppositely charged κ-carrageenan and gelatin hydrogels. Carbohydrate Polymers, 2018, 198, 261-269.	10.2	48
20	Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Materials Science and Engineering C, 2017, 76, 1328-1343.	7.3	381
21	3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel with Strong Interface Bonding. ACS Applied Materials & Interfaces, 2017, 9, 20086-20097.	8.0	191
22	Additive Manufacturing of Patient-Customizable Scaffolds for Tubular Tissues Using the Melt-Drawing Method. Materials, 2016, 9, 893.	2.9	13
23	Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: A new biofabrication strategy. Scientific Reports, 2016, 6, 39140.	3.3	97
24	Revealing martensitic transformation and $\hat{I}\pm/\hat{I}^2$ interface evolution in electron beam melting three-dimensional-printed Ti-6Al-4V. Scientific Reports, 2016, 6, 26039.	3.3	114
25	Characterization, mechanical behavior and in vitro evaluation of a melt-drawn scaffold for esophageal tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57, 246-259.	3.1	27
26	Precipitation of ß-NiAl/Laves eutectics in a Ru-containing single crystal Ni-Based superalloy. Metals and Materials International, 2015, 21, 222-226.	3.4	8
27	An experimental and simulation study on build thickness dependent microstructure for electron beam melted Ti–6Al–4V. Journal of Alloys and Compounds, 2015, 646, 303-309.	5.5	105
28	Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting. Acta Materialia, 2015, 97, 1-16.	7.9	535
29	Fabrication and in vitro analysis of tubular scaffolds by melt-drawing for esophageal tissue engineering. Materials Letters, 2015, 159, 424-427.	2.6	22
30	Solvent-Free Melt-Drawing of Aligned Poly(L-Lactide-Co-ε-Caprolactone) Microfibres into Tubular Scaffold for Esophageal Tissue Engineering. , 2014, , .		0