Yu Jun Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4229195/publications.pdf

Version: 2024-02-01

304743 477307 3,569 30 22 29 citations h-index g-index papers 31 31 31 4974 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting. Acta Materialia, 2015, 97, 1-16.	7.9	535
2	Self-healing electronic skins for aquatic environments. Nature Electronics, 2019, 2, 75-82.	26.0	424
3	Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Materials Science and Engineering C, 2017, 76, 1328-1343.	7.3	381
4	Wireless body sensor networks based on metamaterial textiles. Nature Electronics, 2019, 2, 243-251.	26.0	276
5	A neuro-inspired artificial peripheral nervous system for scalable electronic skins. Science Robotics, 2019, 4, .	17.6	203
6	3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel with Strong Interface Bonding. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20086-20097.	8.0	191
7	A transparent, self-healing and high- \hat{l}^2 dielectric for low-field-emission stretchable optoelectronics. Nature Materials, 2020, 19, 182-188.	27.5	183
8	Self-Healing Electronic Materials for a Smart and Sustainable Future. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15331-15345.	8.0	170
9	Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nature Communications, 2020, 11, 5747.	12.8	118
10	Revealing martensitic transformation and $\hat{l}\pm \hat{l}^2$ interface evolution in electron beam melting three-dimensional-printed Ti-6Al-4V. Scientific Reports, 2016, 6, 26039.	3.3	114
11	An experimental and simulation study on build thickness dependent microstructure for electron beam melted Ti–6Al–4V. Journal of Alloys and Compounds, 2015, 646, 303-309.	5.5	105
12	Near–hysteresis-free soft tactile electronic skins for wearables and reliable machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25352-25359.	7.1	104
13	Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: A new biofabrication strategy. Scientific Reports, 2016, 6, 39140.	3.3	97
14	Development of an Ultrastretchable Double-Network Hydrogel for Flexible Strain Sensors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12814-12823.	8.0	97
15	Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding. ACS Applied Materials & Diterfaces, 2018, 10, 11164-11174.	8.0	82
16	Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing. Biofabrication, 2019, 11, 025011.	7.1	76
17	Progress and Roadmap for Intelligent Selfâ€Healing Materials in Autonomous Robotics. Advanced Materials, 2021, 33, e2002800.	21.0	7 5
18	A low cost and flexible carbon nanotube pH sensor fabricated using aerosol jet technology for live cell applications. Sensors and Actuators B: Chemical, 2018, 260, 227-235.	7.8	62

#	Article	IF	CITATIONS
19	A strategy for strong interface bonding by 3D bioprinting of oppositely charged κ-carrageenan and gelatin hydrogels. Carbohydrate Polymers, 2018, 198, 261-269.	10.2	48
20	Super Tough and Self-Healable Poly(dimethylsiloxane) Elastomer via Hydrogen Bonding Association and Its Applications as Triboelectric Nanogenerators. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31975-31983.	8.0	47
21	Fully transient stretchable fruitâ€based battery as safe and environmentally friendly power source for wearable electronics. EcoMat, 2021, 3, e12073.	11.9	41
22	Characterization, mechanical behavior and in vitro evaluation of a melt-drawn scaffold for esophageal tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57, 246-259.	3.1	27
23	Fabrication and in vitro analysis of tubular scaffolds by melt-drawing for esophageal tissue engineering. Materials Letters, 2015, 159, 424-427.	2.6	22
24	Highly conductive 3D metal-rubber composites for stretchable electronic applications. APL Materials, $2019, 7, .$	5.1	22
25	Submerged and non-submerged 3D bioprinting approaches for the fabrication of complex structures with the hydrogel pair GelMA and alginate/methylcellulose. Additive Manufacturing, 2021, 37, 101640.	3.0	21
26	Scaling Metalâ€Elastomer Composites toward Stretchable Multiâ€Helical Conductive Paths for Robust Responsive Wearable Health Devices. Advanced Healthcare Materials, 2021, 10, e2100221.	7.6	18
27	Additive Manufacturing of Patient-Customizable Scaffolds for Tubular Tissues Using the Melt-Drawing Method. Materials, 2016, 9, 893.	2.9	13
28	Precipitation of ß-NiAl/Laves eutectics in a Ru-containing single crystal Ni-Based superalloy. Metals and Materials International, 2015, 21, 222-226.	3.4	8
29	Harnessing the circular economy to develop sustainable soft robots. Science Robotics, 2022, 7, eabn8147.	17.6	6
30	Solvent-Free Melt-Drawing of Aligned Poly(L-Lactide-Co-ε-Caprolactone) Microfibres into Tubular Scaffold for Esophageal Tissue Engineering. , 2014, , .		0