

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4229143/publications.pdf Version: 2024-02-01

VANLL

#	Article	IF	CITATIONS
1	Applications of Carbon Nanotubes in Oxygen Electrocatalytic Reactions. ACS Applied Materials & Interfaces, 2022, 14, 20455-20462.	8.0	16
2	Single-walled carbon nanotube based SERS substrate with single molecule sensitivity. Nano Research, 2022, 15, 694-700.	10.4	21
3	One-Dimensional van der Waals Heterostructures: A Perspective. ACS Nanoscience Au, 2022, 2, 3-11.	4.8	21
4	Selective Growth of Singleâ€walled Carbon Nanotubes using Cobalt Disilicide. ChemNanoMat, 2022, 8, .	2.8	4
5	Synthesis of crystalline WS ₃ with a layered structure and desert-rose-like morphology. Nanoscale Advances, 2022, 4, 1626-1631.	4.6	2
6	Stable Doping of Single-Walled Carbon Nanotubes for Flexible Transparent Conductive Films. ACS Nano, 2022, 16, 1063-1071.	14.6	24
7	Building blocks for one-dimensional van der Waals heterostructures. , 2022, 1, 20220016.		2
8	Polyoxometalate steric hindrance driven chirality-selective separation of subnanometer carbon nanotubes. Chemical Science, 2022, 13, 5920-5928.	7.4	10
9	Marangoni-flow-assisted assembly of single-walled carbon nanotube films for human motion sensing. Fundamental Research, 2022, , .	3.3	1
10	Kinetic diffusion–controlled synthesis of twinned intermetallic nanocrystals for CO-resistant catalysis. Science Advances, 2022, 8, .	10.3	16
11	(Invited, Digital Presentation) Uniqueness of Cobalt-Tungsten Intermetallic Compounds in Catalyzing Single-Walled Carbon Nanotube Growth. ECS Meeting Abstracts, 2022, MA2022-01, 765-765.	0.0	0
12	(Invited, Digital Presentation) Application of Polyacid Clusters in Modifying Single-Walled Carbon Nanotubes. ECS Meeting Abstracts, 2022, MA2022-01, 723-723.	0.0	0
13	Graphene oxide-supported cobalt tungstate as catalyst precursor for selective growth of single-walled carbon nanotubes. Inorganic Chemistry Frontiers, 2021, 8, 940-946.	6.0	11
14	Carbon nanotubes for flexible batteries: recent progress and future perspective. National Science Review, 2021, 8, nwaa261.	9.5	71
15	Atomic origins of the strong metal–support interaction in silica supported catalysts. Chemical Science, 2021, 12, 12651-12660.	7.4	36
16	Carbon-Involved Near-Surface Evolution of Cobalt Nanocatalysts: An in Situ Study. CCS Chemistry, 2021, 3, 154-167.	7.8	36
17	Carbon nanotube supported bifunctional electrocatalysts containing iron-nitrogen-carbon active sites for zinc-air batteries. Nano Research, 2021, 14, 4541-4547.	10.4	30
18	Putting the World Back Together and Announcing the 2021 ACS Nano Award Lecture Laureates. ACS Nano, 2021, 15, 7837-7839.	14.6	2

#	Article	IF	CITATIONS
19	(Invited) In Situ Study on Nucleation and Growth of Single-Walled Carbon Nanotubes on Catalysts. ECS Meeting Abstracts, 2021, MA2021-01, 547-547.	0.0	0
20	One-step synthesis of MOF-derived Cu@N-doped carbon composites as counter electrode catalysts for quantum dot-sensitized solar cells. Electrochimica Acta, 2021, 380, 138228.	5.2	9
21	Host–Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2021, 143, 10120-10130.	13.7	44
22	Carbon Nanotube Research in Its 30th Year. ACS Nano, 2021, 15, 9197-9200.	14.6	15
23	High-yield and low-cost separation of high-purity semiconducting single-walled carbon nanotubes with closed-loop recycling of raw materials and solvents. Nano Research, 2021, 14, 4281-4287.	10.4	11
24	Monolithic flexible supercapacitors drawn with nitrogen-doped carbon nanotube-graphene ink. Materials Research Bulletin, 2021, 139, 111266.	5.2	18
25	One-dimensional van der Waals heterostructures: Growth mechanism and handedness correlation revealed by nondestructive TEM. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	35
26	Growth of Single-walled Carbon Nanotubes on Substrates Using Carbon Monoxide as Carbon Source. Chemical Research in Chinese Universities, 2021, 37, 1125-1129.	2.6	6
27	3D Vertical Arrays of Nanomaterials for Microscaled Energy Storage Devices. Accounts of Materials Research, 2021, 2, 1215-1226.	11.7	13
28	2 D Hybrid of Ni‣DH Chips on Carbon Nanosheets as Cathode of Zinc–Air Battery for Electrocatalytic Conversion of O ₂ into H ₂ O ₂ . ChemSusChem, 2020, 13, 1496-1503.	6.8	30
29	Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nature Nanotechnology, 2020, 15, 164-166.	31.5	69
30	Carbon nanotube-based electrodes for flexible supercapacitors. Nano Research, 2020, 13, 1825-1841.	10.4	142
31	Gelation of uranyl ions and gel-derived uranium oxide nanoparticles for gas sensing. Nanoscale Advances, 2020, 2, 2478-2484.	4.6	5
32	Announcing the 2020 ACS Nano Award Lecture Laureates. ACS Nano, 2020, 14, 1213-1215.	14.6	4
33	Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chemical Reviews, 2020, 120, 2693-2758.	47.7	278
34	One-dimensional van der Waals heterostructures. Science, 2020, 367, 537-542.	12.6	238
35	Electronic Raman Scattering in Suspended Semiconducting Carbon Nanotube. Journal of Physical Chemistry Letters, 2020, 11, 10497-10503.	4.6	5
36	Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.	14.6	1

#	Article	IF	CITATIONS
37	(Invited) In Situ Study on Cleation and Growth of Single-Walled Carbon Nanotubes on Catalysts. ECS Meeting Abstracts, 2020, MA2020-01, 664-664.	0.0	0
38	Diameter controlled growth of single-walled carbon nanotubes. Scientia Sinica Chimica, 2020, 50, 1188-1204.	0.4	1
39	Patterning catalyst via inkjet printing to grow single-walled carbon nanotubes. Chinese Chemical Letters, 2019, 30, 505-508.	9.0	6
40	Epitaxial growth of horizontally aligned single-crystal arrays of perovskite. Science China Materials, 2019, 62, 59-64.	6.3	5
41	Cu _x S nanoparticle@carbon nanorod composites prepared from metal–organic frameworks as efficient electrode catalysts for quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2019, 7, 2210-2218.	10.3	15
42	The Future of Layer-by-Layer Assembly: A Tribute to <i>ACS Nano</i> Associate Editor Helmuth Möhwald. ACS Nano, 2019, 13, 6151-6169.	14.6	211
43	Atomic-scale structural identification and evolution of Co-W-C ternary SWCNT catalytic nanoparticles: High-resolution STEM imaging on SiO ₂ . Science Advances, 2019, 5, eaat9459.	10.3	71
44	Material patterning on substrates by manipulation of fluidic behavior. National Science Review, 2019, 6, 758-766.	9.5	11
45	Atomic Scale Stability of Tungsten–Cobalt Intermetallic Nanocrystals in Reactive Environment at High Temperature. Journal of the American Chemical Society, 2019, 141, 5871-5879.	13.7	39
46	Tailoring the electrocatalytic oxygen reduction reaction pathway by tuning the electronic states of single-walled carbon nanotubes. Carbon, 2019, 147, 35-42.	10.3	11
47	Toward Complete Resolution of DNA/Carbon Nanotube Hybrids by Aqueous Two-Phase Systems. Journal of the American Chemical Society, 2019, 141, 20177-20186.	13.7	45
48	Pencilâ€Drawing Skinâ€Mountable Microâ€ S upercapacitors. Small, 2019, 15, e1804037.	10.0	42
49	(Invited) In Situ Study of Cobalt-Tungsten and Cobalt Nanocrystals Under Reactive Environment. ECS Meeting Abstracts, 2019, , .	0.0	0
50	Selective growth of chirality-enriched semiconducting carbon nanotubes by using bimetallic catalysts from salt precursors. Nanoscale, 2018, 10, 6922-6927.	5.6	21
51	Helmuth Möhwald (1946–2018). ACS Nano, 2018, 12, 3053-3055.	14.6	0
52	Preparation of sub-square-meter-sized organic semiconductor films for photovoltaics applications. Nano Energy, 2018, 46, 11-19.	16.0	5
53	Engineering active edge sites of fractal-shaped single-layer MoS2 catalysts for high-efficiency hydrogen evolution. Nano Energy, 2018, 51, 786-792.	16.0	98
54	Effect of synthetic condition on the electrochemical behavior of MoO3 microplates used as anode in lithium-ion batteries. Canadian Journal of Chemistry, 2018, 96, 340-344.	1.1	2

#	Article	IF	CITATIONS
55	Hydroxyl-rich ceriaÂhydrate nanoparticles enhancing the alcohol electrooxidation performance of Pt catalysts. Journal of Materials Chemistry A, 2018, 6, 2318-2326.	10.3	43
56	Nanoscience and Nanotechnology Research at Peking University. ACS Nano, 2018, 12, 4075-4076.	14.6	2
57	Confined-solution process for high-quality CH3NH3PbBr3 single crystals with controllable morphologies. Nano Research, 2018, 11, 3306-3312.	10.4	12
58	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, 2018, 12, 11756-11784.	14.6	388
59	Carbon-metal oxide nanocomposites as lithium-sulfur battery cathodes. Functional Materials Letters, 2018, 11, 1830007.	1.2	24
60	Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. ACS Nano, 2018, 12, 9635-9638.	14.6	537
61	(Invited) New Aqueous Two-Phase Systems for Sorting DNA-Wrapped SWCNTs. ECS Meeting Abstracts, 2018, , .	0.0	0
62	(Invited) Structure Characterization of Intermetallic Compound Catalysts and Single-Walled Carbon Nanotubes. ECS Meeting Abstracts, 2018, , .	0.0	0
63	The Quarter-Century Anniversary of Carbon Nanotube Research. ACS Nano, 2017, 11, 1-2.	14.6	26
64	Preparation of horizontally aligned single-walled carbon nanotubes with floating catalyst. Science China Chemistry, 2017, 60, 516-520.	8.2	5
65	Metallic Catalysts for Structure-Controlled Growth of Single-Walled Carbon Nanotubes. Topics in Current Chemistry, 2017, 375, 29.	5.8	55
66	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	14.6	4
67	Diameter-specific growth of single-walled carbon nanotubes using tungsten supported nickel catalysts. Carbon, 2017, 118, 485-492.	10.3	19
68	Prof. Millie Dresselhaus (1930–2017), Carbon Nanomaterials Pioneer. ACS Nano, 2017, 11, 2307-2308.	14.6	2
69	Bilayer Plots for Accurately Determining the Chirality of Single-Walled Carbon Nanotubes Under Complex Environments. ACS Nano, 2017, 11, 10509-10518.	14.6	10
70	Our First and Next Decades at ACS Nano. ACS Nano, 2017, 11, 7553-7555.	14.6	0
71	Catalysts for single-wall carbon nanotube synthesis—From surface growth to bulk preparation. MRS Bulletin, 2017, 42, 809-818.	3.5	13
72	Reduced graphene oxide decorated with Bi2O2.33 nanodots for superior lithium storage. Nano Research, 2017, 10, 3690-3697.	10.4	16

#	Article	IF	CITATIONS
73	Synthesis and catalytic property of urania-palladium-graphene nanohybrids. Science China Materials, 2017, 60, 399-406.	6.3	9
74	Water-Assisted Preparation of High-Purity Semiconducting (14,4) Carbon Nanotubes. ACS Nano, 2017, 11, 186-193.	14.6	100
75	A Big Year Ahead for Nano in 2018. ACS Nano, 2017, 11, 11755-11757.	14.6	1
76	(Invited) Tungsten-Based Intermetallic Compound As Catalyst for Structure-Specific Growth of Single-Walled Carbon Nanotubes. ECS Meeting Abstracts, 2017, , .	0.0	0
77	The dispersion and aggregation of graphene oxide in aqueous media. Nanoscale, 2016, 8, 14587-14592.	5.6	95
78	Chiralityâ€5elective Photoluminescence Enhancement of ssDNAâ€Wrapped Singleâ€Walled Carbon Nanotubes Modified with Gold Nanoparticles. Small, 2016, 12, 3164-3171.	10.0	11
79	Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage. Advanced Energy Materials, 2016, 6, 1600278.	19.5	219
80	Nanoscience and Nanotechnology Impacting Diverse Fields of Science, Engineering, and Medicine. ACS Nano, 2016, 10, 10615-10617.	14.6	22
81	Targeted Raman Imaging of Cells Using Graphene Oxide-Based Hybrids. Langmuir, 2016, 32, 10253-10258.	3.5	15
82	Nucleation of copper nanoparticles on quartz as catalysts to grow single-walled carbon nanotube arrays. Carbon, 2016, 110, 390-395.	10.3	9
83	(n,m) Assignments of Metallic Single-Walled Carbon Nanotubes by Raman Spectroscopy: The Importance of Electronic Raman Scattering. ACS Nano, 2016, 10, 10789-10797.	14.6	27
84	Multiple electronic Raman scatterings in a single metallic carbon nanotube. Physical Review B, 2016, 93, .	3.2	11
85	Templated Synthesis of Single-Walled Carbon Nanotubes with Specific Structure. Accounts of Chemical Research, 2016, 49, 606-615.	15.6	94
86	(Invited) Growth of Single-Walled Carbon Nanotubes with Specific Structure. ECS Meeting Abstracts, 2016, , .	0.0	0
87	Controlled preparation of CuO and Cu nanoparticles attached on carbon nanotubes for glucose sensing. Materials Technology, 2015, 30, A186-A191.	3.0	2
88	Preparation and electrocatalytic properties of triuranium octoxide supported on reduced graphene oxide. Nano Research, 2015, 8, 546-553.	10.4	17
89	Graphene Oxide as a Multifunctional Platform for Raman and Fluorescence Imaging of Cells. Small, 2015, 11, 3000-3005.	10.0	33
90	Deformation of singleâ€walled carbon nanotubes by interaction with graphene: A firstâ€principles study. Journal of Computational Chemistry, 2015, 36, 717-722.	3.3	8

#	Article	IF	CITATIONS
91	Kelvin Probe Force Microscopy in Nanoscience and Nanotechnology. , 2015, , 117-158.		5
92	Growing Zigzag (16,0) Carbon Nanotubes with Structure-Defined Catalysts. Journal of the American Chemical Society, 2015, 137, 8688-8691.	13.7	118
93	(n,m) Assignments and quantification for single-walled carbon nanotubes on SiO ₂ /Si substrates by resonant Raman spectroscopy. Nanoscale, 2015, 7, 10719-10727.	5.6	48
94	Carbon nanomaterials for photovoltaic process. Nano Energy, 2015, 15, 490-522.	16.0	47
95	Radial deformation of single-walled carbon nanotubes on quartz substrates and the resultant anomalous diameter-dependent reaction selectivity. Nano Research, 2015, 8, 3054-3065.	10.4	6
96	Large-scale aligned crystalline CH ₃ NH ₃ PbI ₃ perovskite array films. Journal of Materials Chemistry A, 2015, 3, 18847-18851.	10.3	19
97	Anisotropic Etching of Graphite Flakes with Water Vapor to Produce Armchairâ€Edged Graphene. Small, 2014, 10, 2809-2814.	10.0	23
98	Carbon nanotube-wired and oxygen-deficient MoO 3 nanobelts with enhanced lithium-storage capability. Journal of Power Sources, 2014, 247, 90-94.	7.8	92
99	One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Research, 2014, 7, 765-773.	10.4	105
100	Growth of Semiconducting Single-Walled Carbon Nanotubes by Using Ceria as Catalyst Supports. Nano Letters, 2014, 14, 512-517.	9.1	80
101	Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 2014, 510, 522-524.	27.8	677
102	Reliability tests and improvements for Sc-contacted n-type carbon nanotube transistors. Nano Research, 2013, 6, 535-545.	10.4	19
103	Diameter-controlled growth of aligned single-walled carbon nanotubes on quartz using molecular nanoclusters as catalyst precursors. Science Bulletin, 2013, 58, 433-439.	1.7	16
104	Dispersing Carbon-Based Nanomaterials in Aqueous Phase by Graphene Oxides. Langmuir, 2013, 29, 13527-13534.	3.5	34
105	Composites of Functional Poly(phenylacetylene)s and Single-Walled Carbon Nanotubes: Preparation, Dispersion, and Near Infrared Photoresponsive Properties. Macromolecules, 2013, 46, 8479-8487.	4.8	29
106	Sizeâ€Dependent Enhancement of Electrocatalytic Oxygenâ€Reduction and Hydrogenâ€Evolution Performance of MoS ₂ Particles. Chemistry - A European Journal, 2013, 19, 11939-11948.	3.3	226
107	Quantitative analysis of the (n,m) abundance of single-walled carbon nanotubes dispersed in ionic liquids by optical absorption spectra. Materials Chemistry and Physics, 2013, 139, 233-240.	4.0	10
108	Single-layer graphene sheets as counter electrodes for fiber-shaped polymer solar cells. RSC Advances, 2013, 3, 13720.	3.6	40

#	Article	IF	CITATIONS
109	Spectroscopic Characterization of the Chiral Structure of Individual Singleâ€Walled Carbon Nanotubes and the Edge Structure of Isolated Graphene Nanoribbons. Small, 2013, 9, 1284-1304.	10.0	32
110	CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nature Communications, 2012, 3, 677.	12.8	145
111	Facile preparation of Carbon nanotubes and graphene sheets by a catalyst-free refluxing approach. Nano Research, 2012, 5, 640-645.	10.4	6
112	Simultaneous detection of Raman scattering and near-infrared photoluminescence in one imaging microscope. Review of Scientific Instruments, 2012, 83, 063709.	1.3	3
113	Pointwise Plucking of Suspended Carbon Nanotubes. Nano Letters, 2012, 12, 3663-3667.	9.1	5
114	Solid-State, Polymer-Based Fiber Solar Cells with Carbon Nanotube Electrodes. ACS Nano, 2012, 6, 11027-11034.	14.6	132
115	Nanobelt–carbon nanotube cross-junction solar cells. Energy and Environmental Science, 2012, 5, 6119.	30.8	11
116	Photoluminescence from Exciton Energy Transfer of Single-Walled Carbon Nanotube Bundles Dispersed in Ionic Liquids. Journal of Physical Chemistry C, 2012, 116, 22028-22035.	3.1	16
117	Structure Dependence of the Intermediate-Frequency Raman Modes in Isolated Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 23826-23832.	3.1	13
118	Cell imaging by graphene oxide based on surface enhanced Raman scattering. Nanoscale, 2012, 4, 7084.	5.6	109
119	Channel-Length-Dependent Transport and Photovoltaic Characteristics of Carbon-Nanotube-Based, Barrier-Free Bipolar Diode. ACS Applied Materials & Interfaces, 2012, 4, 1154-1157.	8.0	9
120	Defective super-long carbon nanotubes and polypyrrole composite for high-performance supercapacitor electrodes. Electrochimica Acta, 2012, 66, 279-286.	5.2	51
121	Direct growth of single-walled carbon nanotubes on substrates. Science Bulletin, 2012, 57, 225-233.	1.7	12
122	Surface-Enhanced Raman Spectroscopy of Carbon Nanotubes in Aqueous Solution. Acta Chimica Sinica, 2012, 70, 1533.	1.4	3
123	High-Performance Carbon Nanotube Light-Emitting Diodes with Asymmetric Contacts. Nano Letters, 2011, 11, 23-29.	9.1	91
124	Suspended, Straightened Carbon Nanotube Arrays by Gel Chapping. ACS Nano, 2011, 5, 5656-5661.	14.6	18
125	Electronic transport in single-walled carbon nanotube/graphene junction. Applied Physics Letters, 2011, 99, .	3.3	48
126	Self-Aligned U-Gate Carbon Nanotube Field-Effect Transistor with Extremely Small Parasitic Capacitance and Drain-Induced Barrier Lowering. ACS Nano, 2011, 5, 2512-2519.	14.6	32

#	Article	IF	CITATIONS
127	Efficient photovoltage multiplication in carbon nanotubes. Nature Photonics, 2011, 5, 672-676.	31.4	133
128	How to remove the influence of trace water from the absorption spectra of SWNTs dispersed in ionic liquids. Beilstein Journal of Nanotechnology, 2011, 2, 653-658.	2.8	8
129	Nitrogenâ€Doped Singleâ€Walled Carbon Nanotubes Grown on Substrates: Evidence for Framework Doping and Their Enhanced Properties. Advanced Functional Materials, 2011, 21, 986-992.	14.9	54
130	Visualization of individual single-walled carbon nanotubes under an optical microscope as a result of decoration with gold nanoparticles. Carbon, 2011, 49, 1182-1188.	10.3	19
131	Preparation and electrochemical properties of MnO2nanosheets attached to Au nanoparticles on carbon nanotubes. Dalton Transactions, 2011, 40, 2332-2337.	3.3	42
132	High frequency resistance of single-walled and multiwalled carbon nanotubes. Applied Physics Letters, 2011, 98, .	3.3	11
133	Enhanced etching of silicon didioxide guided by carbon nanotubes in HF solution. Chinese Physics B, 2011, 20, 108103.	1.4	0
134	Thermoelectric Measurement of Multi-Walled Carbon Nanotube Bundles by Using Nano-Probes. Journal of Nanoscience and Nanotechnology, 2010, 10, 4985-4991.	0.9	0
135	Controlled Preparation of Inorganic Nanostructures on Substrates by Dipâ€Pen Nanolithography. Chemistry - an Asian Journal, 2010, 5, 980-990.	3.3	8
136	Preparation and properties of CdS/Au composite nanorods and hollow Au tubes. Science Bulletin, 2010, 55, 921-926.	1.7	15
137	Patterning Nanoparticles by Microcontact Printing and Further Growth of Oneâ€Dimensional Nanomaterials. European Journal of Inorganic Chemistry, 2010, 2010, 4357-4362.	2.0	8
138	A Waveguideâ€Like Effect Observed in Multiwalled Carbon Nanotube Bundles. Advanced Functional Materials, 2010, 20, 2263-2268.	14.9	5
139	Ionicâ€Liquidâ€Assisted Preparation of Carbon Nanotubeâ€5upported Uniform Noble Metal Nanoparticles and Their Enhanced Catalytic Performance. Advanced Functional Materials, 2010, 20, 3747-3752.	14.9	90
140	How Catalysts Affect the Growth of Singleâ€Walled Carbon Nanotubes on Substrates. Advanced Materials, 2010, 22, 1508-1515.	21.0	112
141	In situ measurements on individual thin carbon nanotubes using nanomanipulators inside a scanning electron microscope. Ultramicroscopy, 2010, 110, 182-189.	1.9	39
142	Carbon nanotubes combined with inorganic nanomaterials: Preparations and applications. Coordination Chemistry Reviews, 2010, 254, 1117-1134.	18.8	145
143	Kelvin probe force microscopy study on nanotriboelectrification. Applied Physics Letters, 2010, 96, .	3.3	38
144	Ultrahigh secondary electron emission of carbon nanotubes. Applied Physics Letters, 2010, 96, .	3.3	22

#	Article	IF	CITATIONS
145	Solution-Phase Synthesis of Heteroatom-Substituted Carbon Scaffolds for Hydrogen Storage. Journal of the American Chemical Society, 2010, 132, 15246-15251.	13.7	47
146	Large Signal Operation of Small Band-Gap Carbon Nanotube-Based Ambipolar Transistor: A High-Performance Frequency Doubler. Nano Letters, 2010, 10, 3648-3655.	9.1	36
147	Comparison between Copper and Iron as Catalyst for Chemical Vapor Deposition of Horizontally Aligned Ultralong Single-Walled Carbon Nanotubes on Silicon Substrates. Journal of Physical Chemistry C, 2010, 114, 15547-15552.	3.1	35
148	Y-Contacted High-Performance n-Type Single-Walled Carbon Nanotube Field-Effect Transistors: Scaling and Comparison with Sc-Contacted Devices. Nano Letters, 2009, 9, 4209-4214.	9.1	150
149	Towards Entireâ€Carbonâ€Nanotube Circuits: The Fabrication of Singleâ€Walledâ€Carbonâ€Nanotube Fieldâ€Effect Transistors with Local Multiwalledâ€Carbonâ€Nanotube Interconnects. Advanced Materials, 2009, 21, 1339-1343.	21.0	31
150	Direct observation of the strong interaction between carbon nanotubes and quartz substrate. Nano Research, 2009, 2, 903.	10.4	31
151	Selective Growth of Well-Aligned Semiconducting Single-Walled Carbon Nanotubes. Nano Letters, 2009, 9, 800-805.	9.1	426
152	Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates. Nano Letters, 2009, 9, 3137-3141.	9.1	516
153	Almost Perfectly Symmetric SWCNT-Based CMOS Devices and Scaling. ACS Nano, 2009, 3, 3781-3787.	14.6	100
154	Photoluminescence spectral imaging of ultralong single-walled carbon nanotubes: Micromanipulation-induced strain, rupture, and determination of handedness. Physical Review B, 2009, 80, .	3.2	12
155	Abnormal Raman Intensity of Single-Walled Carbon Nanotubes Grown on Silica Spheres. Journal of Physical Chemistry C, 2009, 113, 5075-5080.	3.1	2
156	Assembling Structure of Single-Walled Carbon Nanotube Thin Bundles. Journal of Physical Chemistry C, 2009, 113, 8132-8135.	3.1	11
157	Tensile Loading of Double-Walled and Triple-Walled Carbon Nanotubes and their Mechanical Properties. Journal of Physical Chemistry C, 2009, 113, 17002-17005.	3.1	47
158	Flexible orientation control of ultralong single-walled carbon nanotubes by gas flow. Nanotechnology, 2009, 20, 185601.	2.6	20
159	Selective Band Structure Modulation of Single-Walled Carbon Nanotubes in Ionic Liquids. Journal of the American Chemical Society, 2009, 131, 5364-5365.	13.7	39
160	Photovoltaic Effects in Asymmetrically Contacted CNT Barrier-Free Bipolar Diode. Journal of Physical Chemistry C, 2009, 113, 6891-6893.	3.1	45
161	Decoration of Gold Nanoparticles on Surface-Grown Single-Walled Carbon Nanotubes for Detection of Every Nanotube by Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2009, 131, 14310-14316.	13.7	97
162	Rational preparation of faceted platinum nanocrystals supported on carbon nanotubes with remarkably enhanced catalytic performance. Chemical Communications, 2009, , 7167.	4.1	39

#	Article	IF	CITATIONS
163	Inorganic hierarchical nanostructures induced by concentration difference and gradient. Nano Research, 2008, 1, 213-220.	10.4	21
164	Composite Films Based on Aligned Carbon Nanotube Arrays and a Poly(<i>N</i> â€Isopropyl Acrylamide) Hydrogel. Advanced Materials, 2008, 20, 2201-2205.	21.0	53
165	A Dopingâ€Free Carbon Nanotube CMOS Inverterâ€Based Bipolar Diode and Ambipolar Transistor. Advanced Materials, 2008, 20, 3258-3262.	21.0	66
166	Controllable preparation and properties of composite materials based on ceria nanoparticles and carbon nanotubes. Journal of Solid State Chemistry, 2008, 181, 2620-2625.	2.9	42
167	The preparation of multi-walled carbon nanotubes encapsulated by poly(3-acrylaminopropylsiloxane) with silica nanospheres on the polymer surface. Carbon, 2008, 46, 1670-1677.	10.3	21
168	Site-Specific Deposition of Gold Nanoparticles on SWNTs. Journal of Physical Chemistry C, 2008, 112, 13437-13441.	3.1	17
169	Why Single-Walled Carbon Nanotubes Can Be Dispersed in Imidazolium-Based Ionic Liquids. ACS Nano, 2008, 2, 2540-2546.	14.6	296
170	Self-Aligned Ballistic n-Type Single-Walled Carbon Nanotube Field-Effect Transistors with Adjustable Threshold Voltage. Nano Letters, 2008, 8, 3696-3701.	9.1	154
171	Direct Growth of Single-Walled Carbon Nanotubes without Metallic Residues by Using Lead as a Catalyst. Chemistry of Materials, 2008, 20, 7521-7525.	6.7	36
172	In Situ Epitaxial Growth of Triangular CdS Nanoplates on Mica by Dip-Pen Nanolithography. Journal of Physical Chemistry C, 2008, 112, 18938-18942.	3.1	10
173	Seed-Mediated Growth of ZnO Nanorods on Multiwalled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2008, 8, 4441-4446.	0.9	8
174	High speed atomic force microscope lithography driven by electrostatic interaction. Applied Physics Letters, 2007, 91, .	3.3	6
175	Spectroscopic Evidence and Molecular Simulation Investigation of the <1>ï€ – <1>ï€ Interaction Between Pyrene Molecules and Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7, 2366-2375.	0.9	70
176	Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits. Nano Letters, 2007, 7, 3603-3607.	9.1	319
177	Ultralow Feeding Gas Flow Guiding Growth of Large-Scale Horizontally Aligned Single-Walled Carbon Nanotube Arrays. Nano Letters, 2007, 7, 2073-2079.	9.1	189
178	Surfactant-assisted synthesis of helical silica. Inorganica Chimica Acta, 2007, 360, 241-245.	2.4	7
179	Copper Catalyzing Growth of Single-Walled Carbon Nanotubes on Substrates. Nano Letters, 2006, 6, 2987-2990.	9.1	350
180	Direct Preparation and Patterning of Iron Oxide Nanoparticles via Microcontact Printing on Silicon Wafers for the Growth of Single-Walled Carbon Nanotubes. Chemistry of Materials, 2006, 18, 4109-4114.	6.7	42

#	Article	IF	CITATIONS
181	Direct growth of carbon nanotube junctions by a two-step chemical vapor deposition. Chemical Physics Letters, 2006, 432, 177-183.	2.6	12
182	Sacrificial template growth of CdS nanotubes from Cd(OH)2 nanowires. Journal of Solid State Chemistry, 2006, 179, 96-102.	2.9	49
183	The preparation of Mg3Si2O5(OH)4 nanotubes under solvothermal conditions. Journal of Porous Materials, 2006, 13, 275-279.	2.6	11
184	Cadmium sulfide nanorods formed in microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 497-501.	4.7	16
185	Shape-Controlled Synthesis of CdS Nanocrystals in Mixed Solvents. Crystal Growth and Design, 2005, 5, 1801-1806.	3.0	93
186	Preferential Growth of Single-Walled Carbon Nanotubes on Silica Spheres by Chemical Vapor Deposition. Journal of Physical Chemistry B, 2005, 109, 6963-6967.	2.6	28
187	Creation of Cadmium Sulfide Nanostructures Using AFM Dip-Pen Nanolithography. Journal of Physical Chemistry B, 2005, 109, 22337-22340.	2.6	45
188	Single Crystalline Trigonal Selenium Nanotubes and Nanowires Synthesized by Sonochemical Process. Crystal Growth and Design, 2005, 5, 911-916.	3.0	115
189	Control of the sizes of zinc sulfide particles by extractant. Journal of Materials Science, 2004, 39, 659-661.	3.7	5
190	Molecular simulation study of different monolayers on Si (111) surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 242, 129-135.	4.7	21
191	Molecular simulation study of alkyl-modified silicon crystal under the external electric field. Chemical Physics Letters, 2004, 389, 155-159.	2.6	3
192	CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst. Applied Physics A: Materials Science and Processing, 2002, 74, 345-348.	2.3	109
193	Preparation of Monodispersed Feâ^'Mo Nanoparticles as the Catalyst for CVD Synthesis of Carbon Nanotubes. Chemistry of Materials, 2001, 13, 1008-1014.	6.7	303
194	Electrochemical AFM "Dip-Pen―Nanolithography. Journal of the American Chemical Society, 2001, 123, 2105-2106.	13.7	250
195	Au "Ink―for AFM "Dip-Pen―Nanolithography. Langmuir, 2001, 17, 2575-2578.	3.5	129
196	Mesoporous cadmium sulfide templated by hexagonal liquid crystal. Journal of Materials Science Letters, 2001, 20, 1233-1235.	0.5	9
197	Preparation of silver nanowire arrays in anodic aluminum oxide templates. Journal of Materials Science Letters, 2001, 20, 925-927.	0.5	56
198	The formation of cadmium sulfide nanowires in different liquid crystal systems. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 286, 106-109.	5.6	57

#	Article	IF	CITATIONS
199	Solvothermal synthesis of nanocrystalline cadmium sulfide. Journal of Materials Science, 2000, 35, 5933-5937.	3.7	46
200	Lattice-Oriented Growth of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2000, 104, 6505-6508.	2.6	98
201	The lecithin vesicle mediated mineralization of cadmium sulphide. Journal of Materials Science Letters, 1999, 18, 1821-1823.	0.5	1
202	Synthesis of ZnS Nanowires in Liquid Crystal Systems. Molecular Crystals and Liquid Crystals, 1999, 337, 193-196.	0.3	11
203	Preparation of Cadmium Sulfide Nanowire Arrays in Anodic Aluminum Oxide Templates. Chemistry of Materials, 1999, 11, 3433-3435.	6.7	86
204	MECHANISM OF THE EXTRACTANT LOSS IN LANTHANIDE EXTRACTION PROCESS WITH SAPONIFIED ORGANOPHOSPHORUS ACID EXTRACTION SYSTEMS — II: FORMATION OF AQUEOUS AGGREGATES. Solvent Extraction and Ion Exchange, 1996, 14, 585-601.	2.0	13
205	TEM study on extractive organic phase containing lanthanide ions. Journal of Alloys and Compounds, 1994, 216, L21-L23.	5.5	4
206	Detection of Offâ€Resonance Singleâ€Walled Carbon Nanotubes by Enormous Surfaceâ€Enhanced Raman	7.3	2

206 Scattering. Advanced Optical Materials, 0, , 2100559.