
Rita Hõrak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4229036/publications.pdf Version: 2024-02-01

Ριτλ ΗΔιισλκ

#	Article	lF	CITATIONS
1	Involvement of Ï, ^S in Starvation-Induced Transposition of <i>Pseudomonas putida</i> Transposon Tn <i>4652</i> . Journal of Bacteriology, 2001, 183, 5445-5448.	2.2	97
2	Promoter-creating mutations in Pseudomonas putida: A model system for the study of mutation in starving bacteria. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3134-3139.	7.1	94
3	Regulation of the catechol 1,2-dioxygenase- and phenol monooxygenase-encoding pheBA operon in Pseudomonas putida PaW85. Journal of Bacteriology, 1993, 175, 8038-8042.	2.2	63
4	The ColRS Two-Component System Regulates Membrane Functions and Protects Pseudomonas putida against Phenol. Journal of Bacteriology, 2006, 188, 8109-8117.	2.2	53
5	The ColR-ColS two-component signal transduction system is involved in regulation of Tn4652 transposition in Pseudomonas putida under starvation conditions. Molecular Microbiology, 2004, 54, 795-807.	2.5	50
6	A DNA Polymerase V Homologue Encoded by TOL Plasmid pWW0 Confers Evolutionary Fitness on Pseudomonas putida under Conditions of Environmental Stress. Journal of Bacteriology, 2005, 187, 5203-5213.	2.2	41
7	A Moderate Toxin, GraT, Modulates Growth Rate and Stress Tolerance of Pseudomonas putida. Journal of Bacteriology, 2014, 196, 157-169.	2.2	38
8	The ColRS signal transduction system responds to the excess of external zinc, iron, manganese, and cadmium. BMC Microbiology, 2014, 14, 162.	3.3	31
9	A dual role in regulation and toxicity for the disordered N-terminus of the toxin GraT. Nature Communications, 2019, 10, 972.	12.8	29
10	In-vivo-generated fusion promoters in Pseudomonas putida. Gene, 1993, 127, 23-29.	2.2	27
11	The impact of ColRS two-component system and TtgABC efflux pump on phenol tolerance of Pseudomonas putida becomes evident only in growing bacteria. BMC Microbiology, 2010, 10, 110.	3.3	26
12	Responses of <i>Pseudomonas putida</i> to Zinc Excess Determined at the Proteome Level: Pathways Dependent and Independent of ColRS. Journal of Proteome Research, 2016, 15, 4349-4368.	3.7	26
13	Transcription from Fusion Promoters Generated during Transposition of Transposon Tn 4652 Is Positively Affected by Integration Host Factor in Pseudomonas putida. Journal of Bacteriology, 2000, 182, 589-598.	2.2	21
14	IHF is the limiting host factor in transposition of Pseudomonas putida transposon Tn4652 in stationary phase. Molecular Microbiology, 2004, 51, 1773-1785.	2.5	21
15	The toxin GraT inhibits ribosome biogenesis. Molecular Microbiology, 2016, 100, 719-734.	2.5	21
16	Chromosomal toxin-antitoxin systems in Pseudomonas putida are rather selfish than beneficial. Scientific Reports, 2020, 10, 9230.	3.3	20
17	The TonB _m -PocAB System Is Required for Maintenance of Membrane Integrity and Polar Position of Flagella in Pseudomonas putida. Journal of Bacteriology, 2019, 201, .	2.2	15
18	Desperate times call for desperate measures: benefits and costs of toxin–antitoxin systems. Current Genetics, 2017, 63, 69-74.	1.7	13

Rita ΗÃμrak

#	Article	IF	CITATIONS
19	Identification of ColR binding consensus and prediction of regulon of ColRS two-component system. BMC Molecular Biology, 2009, 10, 46.	3.0	12
20	The ColRS system is essential for the hunger response of glucose-growing Pseudomonas putida. BMC Microbiology, 2011, 11, 170.	3.3	12
21	Target Site Selection of Pseudomonas putida Transposon Tn 4652. Journal of Bacteriology, 2007, 189, 3918-3921.	2.2	11
22	ColRS twoâ€component system prevents lysis of subpopulation of glucoseâ€grown <i>Pseudomonas putida</i> . Environmental Microbiology, 2008, 10, 2886-2893.	3.8	11
23	Stability of the GraA Antitoxin Depends on Growth Phase, ATP Level, and Global Regulator MexT. Journal of Bacteriology, 2016, 198, 787-796.	2.2	11
24	Pseudomonas putida Responds to the Toxin GraT by Inducing Ribosome Biogenesis Factors and Repressing TCA Cycle Enzymes. Toxins, 2019, 11, 103.	3.4	7
25	Involvement of specialized DNA polymerases Pol II, Pol IV and DnaE2 in DNA replication in the absence of Pol I in Pseudomonas putida. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 714, 63-77.	1.0	6
26	The Disordered C-Terminus of the Chaperone DnaK Increases the Competitive Fitness of Pseudomonas putida and Facilitates the Toxicity of GraT. Microorganisms, 2021, 9, 375.	3.6	5
27	A novel papillation assay for the identification of genes affecting mutation rate in Pseudomonas putida and other pseudomonads. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 790, 41-55.	1.0	3
28	Production, biophysical characterization and crystallization ofPseudomonas putidaGraA and its complexes with GraT and thegraTAoperator. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 455-462.	0.8	2