David M Berson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4228242/publications.pdf

Version: 2024-02-01

60 papers 10,754 citations

33 h-index 55 g-index

71 all docs

71 docs citations

times ranked

71

5623 citing authors

#	Article	IF	CITATIONS
1	Gain control by sparse, ultra-slow glycinergic synapses. Cell Reports, 2022, 38, 110410.	6.4	10
2	Organization and emergence of a mixed GABA-glycine retinal circuit that provides inhibition to mouse ON-sustained alpha retinal ganglion cells. Cell Reports, 2021, 34, 108858.	6.4	9
3	Rapid multi-directed cholinergic transmission in the central nervous system. Nature Communications, 2021, 12, 1374.	12.8	23
4	Keep both eyes on the prize: Hunting mice use binocular vision and specialized retinal neurons to capture prey. Neuron, 2021, 109, 1418-1420.	8.1	6
5	A High-Density Narrow-Field Inhibitory Retinal Interneuron with Direct Coupling to Müller Glia. Journal of Neuroscience, 2021, 41, 6018-6037.	3.6	11
6	Spatially displaced excitation contributes to the encoding of interrupted motion by a retinal direction-selective circuit. ELife, $2021,10,10$	6.0	3
7	Genetic access to neurons in the accessory optic system reveals a role for Sema6A in midbrain circuitry mediating motion perception. Journal of Comparative Neurology, 2019, 527, 282-296.	1.6	25
8	Luminance signals in the human brain. IBRO Reports, 2019, 6, S412.	0.3	0
9	\hat{l} '4-Opioid Receptor Activation Directly Modulates Intrinsically Photosensitive Retinal Ganglion Cells. Neuroscience, 2019, 408, 400-417.	2.3	13
10	Introduction to retinal special issue I. Journal of Comparative Neurology, 2019, 527, 7-8.	1.6	0
11	The M6 cell: A smallâ€field bistratified photosensitive retinal ganglion cell. Journal of Comparative Neurology, 2019, 527, 297-311.	1.6	104
12	Transcriptomic Signatures of Postnatal and Adult Intrinsically Photosensitive Ganglion Cells. ENeuro, 2019, 6, ENEURO.0022-19.2019.	1.9	29
13	Local axonal morphology guides the topography of interneuron myelination in mouse and human neocortex. ELife, 2019, 8, .	6.0	51
14	The M5 Cell: A Color-Opponent Intrinsically Photosensitive Retinal Ganglion Cell. Neuron, 2018, 97, 150-163.e4.	8.1	74
15	GABA release selectively regulates synapse development at distinct inputs on direction-selective retinal ganglion cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12083-E12090.	7.1	19
16	Light Affects Mood and Learning through Distinct Retina-Brain Pathways. Cell, 2018, 175, 71-84.e18.	28.9	316
17	A retinal code for motion along the gravitational and body axes. Nature, 2017, 546, 492-497.	27.8	122
18	A Cre Mouse Line for Probing Irradiance- and Direction-Encoding Retinal Networks. ENeuro, 2017, 4, ENEURO.0065-17.2017.	1.9	27

#	Article	IF	CITATIONS
19	A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice. ELife, 2017, 6, .	6.0	64
20	Melanopsin ganglion cells extend dendrites into the outer retina during early postnatal development. Developmental Neurobiology, 2015, 75, 935-946.	3.0	18
21	RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells. Molecular Biology of the Cell, 2015, 26, 3671-3678.	2.1	7
22	Measuring and using light in the melanopsin age. Trends in Neurosciences, 2014, 37, 1-9.	8.6	879
23	Genetic Dissection of Retinal Inputs to Brainstem Nuclei Controlling Image Stabilization. Journal of Neuroscience, 2013, 33, 17797-17813.	3.6	150
24	Mouse Ganglion-Cell Photoreceptors Are Driven by the Most Sensitive Rod Pathway and by Both Types of Cones. PLoS ONE, 2013, 8, e66480.	2.5	74
25	Form and Function of the M4 Cell, an Intrinsically Photosensitive Retinal Ganglion Cell Type Contributing to Geniculocortical Vision. Journal of Neuroscience, 2012, 32, 13608-13620.	3.6	208
26	Dopaminergic modulation of ganglionâ€eell photoreceptors in rat. European Journal of Neuroscience, 2012, 35, 507-518.	2.6	84
27	Cadherin-6 Mediates Axon-Target Matching in a Non-Image-Forming Visual Circuit. Neuron, 2011, 71, 632-639.	8.1	137
28	Light acts through melanopsin to alter retinal waves and segregation of retinogeniculate afferents. Nature Neuroscience, 2011, 14, 827-829.	14.8	72
29	Ganglion-Cell Photoreceptors and Non-Image-Forming Vision. , 2011, , 526-544.		2
30	Morphology and mosaics of melanopsinâ€expressing retinal ganglion cell types in mice. Journal of Comparative Neurology, 2010, 518, 2405-2422.	1.6	169
31	Morphology and mosaics of melanopsinâ€expressing retinal ganglion cell types in mice. Journal of Comparative Neurology, 2010, 518, spc1.	1.6	137
32	Melanopsin-Expressing Retinal Ganglion-Cell Photoreceptors: Cellular Diversity and Role in Pattern Vision. Neuron, 2010, 67, 49-60.	8.1	544
33	Hyperpolarization-Activated Current (Ih) in Ganglion-Cell Photoreceptors. PLoS ONE, 2010, 5, e15344.	2.5	31
34	Circadian Modulation of Melanopsin-Driven Light Response in Rat Ganglion-Cell Photoreceptors. Journal of Biological Rhythms, 2009, 24, 391-402.	2.6	48
35	Morphology of retinal ganglion cells in the ferret (<i>Mustela putorius furo</i>). Journal of Comparative Neurology, 2009, 517, 459-480.	1.6	8
36	Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: Contacts with dopaminergic amacrine cells and melanopsin ganglion cells. Journal of Comparative Neurology, 2009, 517, 226-244.	1.6	149

3

#	Article	IF	Citations
37	Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision. Nature, 2008, 453, 102-105.	27.8	734
38	Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14181-14186.	7.1	243
39	Melanopsin Ganglion Cells Use a Membrane-Associated Rhabdomeric Phototransduction Cascade. Journal of Neurophysiology, 2008, 99, 2522-2532.	1.8	170
40	The Retina-Attached SCN Slice Preparation: An In Vitro Mammalian Circadian Visual System. Journal of Biological Rhythms, 2007, 22, 400-410.	2.6	14
41	Synaptic influences on rat ganglion-cell photoreceptors. Journal of Physiology, 2007, 582, 279-296.	2.9	225
42	Phototransduction in ganglion-cell photoreceptors. Pflugers Archiv European Journal of Physiology, 2007, 454, 849-855.	2.8	136
43	Central projections of melanopsin-expressing retinal ganglion cells in the mouse. Journal of Comparative Neurology, 2006, 497, 326-349.	1.6	823
44	Induction of photosensitivity by heterologous expression of melanopsin. Nature, 2005, 433, 745-749.	27.8	388
45	Photoreceptor Adaptation in Intrinsically Photosensitive Retinal Ganglion Cells. Neuron, 2005, 48, 1001-1010.	8.1	180
46	Strange vision: ganglion cells as circadian photoreceptors. Trends in Neurosciences, 2003, 26, 314-320.	8.6	477
47	Inhibitory network properties shaping the light evoked responses of cat alpha retinal ganglion cells. Visual Neuroscience, 2003, 20, 351-361.	1.0	24
48	Melanopsin, Ganglion-Cell Photoreceptors, and Mammalian Photoentrainment. Journal of Biological Rhythms, 2003, 18, 227-234.	2.6	126
49	Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock. Science, 2002, 295, 1070-1073.	12.6	2,877
50	Intrinsic physiological properties of cat retinal ganglion cells. Journal of Physiology, 2002, 538, 787-802.	2.9	177
51	Intrinsic physiological properties of cat retinal ganglion cells. , 2002, 538, 787.		2
52	Theta ganglion cell type of cat retina. , 2000, 417, 32-48.		58
53	The Eta ganglion cell type of cat retina. Journal of Comparative Neurology, 1999, 408, 204-19.	1.6	11
54	The zeta cell: A new ganglion cell type in cat retina. , 1998, 399, 269-288.		63

#	Article	IF	CITATION
55	High-Pressure Directed Water Jets as a Cause of Severe Bilateral Intraocular Injuries. American Journal of Ophthalmology, 1995, 120, 542-543.	3.3	7
56	A method for reliable and permanent intracellular staining of retinal ganglion cells. Journal of Neuroscience Methods, 1992, 41, 45-51.	2.5	39
57	Chapter 2: Retinal and cortical inputs to cat superior colliculus: composition, convergence and laminar specificity. Progress in Brain Research, 1988, 75, 17-26.	1.4	44
58	Subsystems Within the Visual Association Cortex as Delineated by their Thalamic and Transcortical Affiliations. Progress in Brain Research, 1983, 58, 229-238.	1.4	9
59	Autoradiographic evidence for a projection from the pretectal nucleus of the optic tract to the dorsal lateral geniculate complex in the cat. Brain Research, 1980, 195, 1-12.	2.2	58
60	Parallel thalamic zones in the LP-pulvinar complex of the cat identified by their afferent and efferent connections. Brain Research, 1978, 147, 139-148.	2.2	192