
Elizabeth Jefferies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4227971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Situating the default-mode network along a principal gradient of macroscale cortical organization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12574-12579.	7.1	1,481
2	The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 2017, 18, 42-55.	10.2	1,131
3	Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain, 2006, 129, 2132-2147.	7.6	666
4	Going beyond Inferior Prefrontal Involvement in Semantic Control: Evidence for the Additional Contribution of Dorsal Angular Gyrus and Posterior Middle Temporal Cortex. Journal of Cognitive Neuroscience, 2013, 25, 1824-1850.	2.3	407
5	The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS. Cortex, 2013, 49, 611-625.	2.4	400
6	The Neural Organization of Semantic Control: TMS Evidence for a Distributed Network in Left Inferior Frontal and Posterior Middle Temporal Gyrus. Cerebral Cortex, 2011, 21, 1066-1075.	2.9	390
7	The Ventral and Inferolateral Aspects of the Anterior Temporal Lobe Are Crucial in Semantic Memory: Evidence from a Novel Direct Comparison of Distortion-Corrected fMRI, rTMS, and Semantic Dementia. Cerebral Cortex, 2010, 20, 2728-2738.	2.9	378
8	The default mode network in cognition: a topographical perspective. Nature Reviews Neuroscience, 2021, 22, 503-513.	10.2	368
9	Anterior temporal lobes mediate semantic representation: Mimicking semantic dementia by using rTMS in normal participants. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20137-20141.	7.1	366
10	Both the Middle Temporal Gyrus and the Ventral Anterior Temporal Area Are Crucial for Multimodal Semantic Processing: Distortion-corrected fMRI Evidence for a Double Gradient of Information Convergence in the Temporal Lobes. Journal of Cognitive Neuroscience, 2012, 24, 1766-1778.	2.3	294
11	Exploring the role of the posterior middle temporal gyrus in semantic cognition: Integration of anterior temporal lobe with executive processes. NeuroImage, 2016, 137, 165-177.	4.2	290
12	Conceptual Knowledge Is Underpinned by the Temporal Pole Bilaterally: Convergent Evidence from rTMS. Cerebral Cortex, 2009, 19, 832-838.	2.9	282
13	Category-Specific versus Category-General Semantic Impairment Induced by Transcranial Magnetic Stimulation. Current Biology, 2010, 20, 964-968.	3.9	244
14	Default mode network can support the level of detail in experience during active task states. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9318-9323.	7.1	212
15	Amodal semantic representations depend on both anterior temporal lobes: Evidence from repetitive transcranial magnetic stimulation. Neuropsychologia, 2010, 48, 1336-1342.	1.6	210
16	Distant from input: Evidence of regions within the default mode network supporting perceptually-decoupled and conceptually-guided cognition. NeuroImage, 2018, 171, 393-401.	4.2	209
17	Anatomical and microstructural determinants of hippocampal subfield functional connectome embedding. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10154-10159.	7.1	201
18	Comprehension of concrete and abstract words in semantic dementia Neuropsychology, 2009, 23, 492-499	1.3	196

#	Article	IF	CITATIONS
19	Executive Semantic Processing Is Underpinned by a Large-scale Neural Network: Revealing the Contribution of Left Prefrontal, Posterior Temporal, and Parietal Cortex to Controlled Retrieval and Selection Using TMS. Journal of Cognitive Neuroscience, 2012, 24, 133-147.	2.3	195
20	Elucidating the Nature of Deregulated Semantic Cognition in Semantic Aphasia: Evidence for the Roles of Prefrontal and Temporo-parietal Cortices. Journal of Cognitive Neuroscience, 2010, 22, 1597-1613.	2.3	193
21	Deficits of knowledge versus executive control in semantic cognition: Insights from cued naming. Neuropsychologia, 2008, 46, 649-658.	1.6	174
22	"Presemantic―Cognition in Semantic Dementia: Six Deficits in Search of an Explanation. Journal of Cognitive Neuroscience, 2006, 18, 169-183.	2.3	173
23	Automatic and Controlled Semantic Retrieval: TMS Reveals Distinct Contributions of Posterior Middle Temporal Gyrus and Angular Gyrus. Journal of Neuroscience, 2015, 35, 15230-15239.	3.6	172
24	Different impairments of semantic cognition in semantic dementia and semantic aphasia: evidence from the non-verbal domain. Brain, 2009, 132, 2593-2608.	7.6	153
25	Ventrolateral Prefrontal Cortex Plays an Executive Regulation Role in Comprehension of Abstract Words: Convergent Neuropsychological and Repetitive TMS Evidence. Journal of Neuroscience, 2010, 30, 15450-15456.	3.6	132
26	Refractory effects in stroke aphasia: A consequence of poor semantic control. Neuropsychologia, 2007, 45, 1065-1079.	1.6	127
27	Individual variation in intentionality in the mind-wandering state is reflected in the integration of the default-mode, fronto-parietal, and limbic networks. NeuroImage, 2017, 146, 226-235.	4.2	127
28	Computing the Social Brain Connectome Across Systems and States. Cerebral Cortex, 2018, 28, 2207-2232.	2.9	127
29	Representing Representation: Integration between the Temporal Lobe and the Posterior Cingulate Influences the Content and Form of Spontaneous Thought. PLoS ONE, 2016, 11, e0152272.	2.5	126
30	Heterogeneity of the Left Temporal Lobe in Semantic Representation and Control: Priming Multiple versus Single Meanings of Ambiguous Words. Cerebral Cortex, 2011, 21, 831-844.	2.9	120
31	Disorders of representation and control in semantic cognition: Effects of familiarity, typicality, and specificity. Neuropsychologia, 2015, 76, 220-239.	1.6	115
32	Dimensions of Experience: Exploring the Heterogeneity of the Wandering Mind. Psychological Science, 2018, 29, 56-71.	3.3	109
33	Automatic and controlled processing in sentence recall: The role of long-term and working memory. Journal of Memory and Language, 2004, 51, 623-643.	2.1	106
34	The role of the anterior temporal lobes in the comprehension of concrete and abstract words: rTMS evidence. Cortex, 2009, 45, 1104-1110.	2.4	106
35	The role of the default mode network in component processes underlying the wandering mind. Social Cognitive and Affective Neuroscience, 2017, 12, 1047-1062.	3.0	104
36	Modes of operation: A topographic neural gradient supporting stimulus dependent and independent cognition. Neurolmage, 2019, 186, 487-496.	4.2	98

#	Article	IF	CITATIONS
37	Tracking thoughts: Exploring the neural architecture of mental time travel during mind-wandering. NeuroImage, 2017, 147, 272-281.	4.2	91
38	Down but not out in posterior cingulate cortex: Deactivation yet functional coupling with prefrontal cortex during demanding semantic cognition. NeuroImage, 2016, 141, 366-377.	4.2	90
39	The ebb and flow of attention: Between-subject variation in intrinsic connectivity and cognition associated with the dynamics of ongoing experience. NeuroImage, 2019, 185, 286-299.	4.2	87
40	"Presemantic" Cognition in Semantic Dementia: Six Deficits in Search of an Explanation. Journal of Cognitive Neuroscience, 2006, 18, 169-183.	2.3	86
41	Temporal lobe epilepsy. Neurology, 2019, 92, e2209-e2220.	1.1	80
42	Varieties of semantic cognition revealed through simultaneous decomposition of intrinsic brain connectivity and behaviour. Neurolmage, 2017, 158, 1-11.	4.2	78
43	Lexical and semantic binding in verbal short-term memory. Journal of Memory and Language, 2006, 54, 81-98.	2.1	76
44	Conceptual control across modalities: graded specialisation for pictures and words in inferior frontal and posterior temporal cortex. Neuropsychologia, 2015, 76, 92-107.	1.6	74
45	Deregulated Semantic Cognition Follows Prefrontal and Temporo-parietal Damage: Evidence from the Impact of Task Constraint on Nonverbal Object Use. Journal of Cognitive Neuroscience, 2011, 23, 1125-1135.	2.3	69
46	How do we decide what to do? Resting-state connectivity patterns and components of self-generated thought linked to the development of more concrete personal goals. Experimental Brain Research, 2018, 236, 2469-2481.	1.5	68
47	Exploring multimodal semantic control impairments in semantic aphasia: Evidence from naturalistic object use. Neuropsychologia, 2009, 47, 2721-2731.	1.6	66
48	A semantic contribution to nonword recall? Evidence for intact phonological processes in semantic dementia. Cognitive Neuropsychology, 2005, 22, 183-212.	1.1	62
49	A gradient from long-term memory to novel cognition: Transitions through default mode and executive cortex. Neurolmage, 2020, 220, 117074.	4.2	59
50	Charting the effects of TMS with fMRI: Modulation of cortical recruitment within the distributed network supporting semantic control. Neuropsychologia, 2016, 93, 40-52.	1.6	56
51	The role of default mode network in semantic cue integration. NeuroImage, 2020, 219, 117019.	4.2	56
52	The neural correlates of ongoing conscious thought. IScience, 2021, 24, 102132.	4.1	56
53	Knowing what from where: Hippocampal connectivity with temporoparietal cortex at rest is linked to individual differences in semantic and topographic memory. NeuroImage, 2017, 152, 400-410.	4.2	55
54	The neurocognitive basis of knowledge about object identity and events: dissociations reflect opposing effects of semantic coherence and control. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190300.	4.0	54

#	Article	IF	CITATIONS
55	Fractionating the anterior temporal lobe: MVPA reveals differential responses to input and conceptual modality. NeuroImage, 2017, 147, 19-31.	4.2	53
56	The relationship between individual variation in macroscale functional gradients and distinct aspects of ongoing thought. NeuroImage, 2020, 220, 117072.	4.2	53
57	The impact of semantic impairment on verbal short-term memory in stroke aphasia and semantic dementia: A comparative study. Journal of Memory and Language, 2008, 58, 66-87.	2.1	52
58	A category-specific advantage for numbers in verbal short-term memory: Evidence from semantic dementia. Neuropsychologia, 2004, 42, 639-660.	1.6	51
59	The Differential Contributions of pFC and Temporo-parietal Cortex to Multimodal Semantic Control: Exploring Refractory Effects in Semantic Aphasia. Journal of Cognitive Neuroscience, 2012, 24, 778-793.	2.3	50
60	Lexical and semantic influences on item and order memory in immediate serial recognition: Evidence from a novel task. Quarterly Journal of Experimental Psychology, 2006, 59, 949-964.	1.1	49
61	Distinct and common neural coding of semantic and non-semantic control demands. NeuroImage, 2021, 236, 118230.	4.2	48
62	Varieties of semantic â€~access' deficit in Wernicke's aphasia and semantic aphasia. Brain, 2015, 138, 3776-3792.	7.6	47
63	The contribution of executive control to semantic cognition: Convergent evidence from semantic aphasia and executive dysfunction. Journal of Neuropsychology, 2018, 12, 312-340.	1.4	46
64	Predictors of Poststroke Aphasia Recovery. Stroke, 2021, 52, 1778-1787.	2.0	46
65	TMS interferes with lexical-semantic retrieval in left inferior frontal gyrus and posterior middle temporal gyrus: Evidence from cyclical picture naming. Neuropsychologia, 2014, 64, 24-32.	1.6	45
66	The psychological correlates of distinct neural states occurring during wakeful rest. Scientific Reports, 2020, 10, 21121.	3.3	44
67	Dosage, Intensity, and Frequency of Language Therapy for Aphasia: A Systematic Review–Based, Individual Participant Data Network Meta-Analysis. Stroke, 2022, 53, 956-967.	2.0	44
68	Do deep dyslexia, dysphasia and dysgraphia share a common phonological impairment?. Neuropsychologia, 2007, 45, 1553-1570.	1.6	43
69	The Selective Role of Premotor Cortex in Speech Perception: A Contribution to Phoneme Judgements but not Speech Comprehension. Journal of Cognitive Neuroscience, 2013, 25, 2179-2188.	2.3	41
70	A role for the ventromedial prefrontal cortex in self-generated episodic social cognition. NeuroImage, 2020, 218, 116977.	4.2	41
71	Surface Dyslexia in Semantic Dementia: A Comparison of the Influence of Consistency and Regularity. Neurocase, 2004, 10, 290-299.	0.6	40
72	Patterns of thought: Population variation in the associations between large-scale network organisation and self-reported experiences at rest. NeuroImage, 2018, 176, 518-527.	4.2	40

#	Article	IF	CITATIONS
73	Oscillatory Dynamics Supporting Semantic Cognition: MEG Evidence for the Contribution of the Anterior Temporal Lobe Hub and Modality-Specific Spokes. PLoS ONE, 2017, 12, e0169269.	2.5	37
74	When does word meaning affect immediate serial recall in semantic dementia?. Cognitive, Affective and Behavioral Neuroscience, 2004, 4, 20-42.	2.0	36
75	Shared neural processes support semantic control and action understanding. Brain and Language, 2015, 142, 24-35.	1.6	36
76	Degrees of lateralisation in semantic cognition: Evidence from intrinsic connectivity. NeuroImage, 2019, 202, 116089.	4.2	36
77	Dynamic semantic cognition: Characterising coherent and controlled conceptual retrieval through time using magnetoencephalography and chronometric transcranial magnetic stimulation. Cortex, 2018, 103, 329-349.	2.4	35
78	Dissociations in semantic cognition: Oscillatory evidence for opposing effects of semantic control and type of semantic relation in anterior and posterior temporal cortex. Cortex, 2019, 120, 308-325.	2.4	35
79	Task-based and resting-state fMRI reveal compensatory network changes following damage to left inferior frontal gyrus. Cortex, 2018, 99, 150-165.	2.4	34
80	Both Default and Multiple-Demand Regions Represent Semantic Goal Information. Journal of Neuroscience, 2021, 41, 3679-3691.	3.6	34
81	The impact of phonological or semantic impairment on delayed auditory repetition: Evidence from stroke aphasia and semantic dementia. Aphasiology, 2006, 20, 963-992.	2.2	33
82	The role of the temporal lobe semantic system in number knowledge: evidence from late-stage semantic dementia. Neuropsychologia, 2005, 43, 887-905.	1.6	31
83	"Pre-semantic―cognition revisited: Critical differences between semantic aphasia and semantic dementia. Neuropsychologia, 2010, 48, 248-261.	1.6	31
84	Varying demands for cognitive control reveals shared neural processes supporting semantic and episodic memory retrieval. Nature Communications, 2021, 12, 2134.	12.8	31
85	Selective short-term memory deficits arise from impaired domain-general semantic control mechanisms Journal of Experimental Psychology: Learning Memory and Cognition, 2009, 35, 137-156.	0.9	29
86	Meaningful inhibition: Exploring the role of meaning and modality in response inhibition. NeuroImage, 2018, 181, 108-119.	4.2	29
87	Reductions in task positive neural systems occur with the passage of time and are associated with changes in ongoing thought. Scientific Reports, 2020, 10, 9912.	3.3	29
88	Semantic memory is key to binding phonology: Converging evidence from immediate serial recall in semantic dementia and healthy participants. Neuropsychologia, 2009, 47, 747-760.	1.6	28
89	Deficits of semantic control produce absent or reverse frequency effects in comprehension: Evidence from neuropsychology and dual task methodology. Neuropsychologia, 2012, 50, 1968-1979.	1.6	28
90	The structural basis of semantic control: Evidence from individual differences in cortical thickness. NeuroImage, 2018, 181, 480-489.	4.2	28

#	Article	IF	CITATIONS
91	Facing up to the wandering mind: Patterns of off-task laboratory thought are associated with stronger neural recruitment of right fusiform cortex while processing facial stimuli. NeuroImage, 2020, 214, 116765.	4.2	28
92	Semantic control deficits impair understanding of thematic relationships more than object identity. Neuropsychologia, 2017, 104, 113-125.	1.6	27
93	Shared processes resolve competition within and between episodic and semantic memory: Evidence from patients with LIFG lesions. Cortex, 2018, 108, 127-143.	2.4	27
94	The impact of social isolation and changes in work patterns on ongoing thought during the first COVID-19 lockdown in the United Kingdom. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
95	Explaining semantic short-term memory deficits: Evidence for the critical role of semantic control. Neuropsychologia, 2011, 49, 368-381.	1.6	25
96	The role of the right hemisphere in semantic control: A case-series comparison of right and left hemisphere stroke. Neuropsychologia, 2016, 85, 44-61.	1.6	25
97	Exploring patterns of ongoing thought under naturalistic and conventional task-based conditions. Consciousness and Cognition, 2021, 93, 103139.	1.5	25
98	A tale of two gradients: differences between the left and right hemispheres predict semantic cognition. Brain Structure and Function, 2022, 227, 631-654.	2.3	25
99	Remembering †̃zeal' but not †̃thing': Reverse frequency effects as a consequence of deregulated semantic processing. Neuropsychologia, 2011, 49, 580-584.	1.6	24
100	Premorbid expertise produces category-specific impairment in a domain-general semantic disorder. Neuropsychologia, 2011, 49, 3213-3223.	1.6	24
101	In need of constraint: Understanding the role of the cingulate cortex in the impulsive mind. NeuroImage, 2017, 146, 804-813.	4.2	24
102	Distinct individual differences in default mode network connectivity relate to off-task thought and text memory during reading. Scientific Reports, 2019, 9, 16220.	3.3	23
103	Controlled semantic summation correlates with intrinsic connectivity between default mode and control networks. Cortex, 2020, 129, 356-375.	2.4	23
104	Lexical coherence in short-term memory: Strategic reconstruction or "semantic glue�. Quarterly Journal of Experimental Psychology, 2009, 62, 1967-1982.	1.1	22
105	Context-dependent lexical ambiguity resolution: MEG evidence for the time-course of activity in left inferior frontal gyrus and posterior middle temporal gyrus. Brain and Language, 2018, 177-178, 23-36.	1.6	22
106	Knowing what you need to know in advance: The neural processes underpinning flexible semantic retrieval of thematic and taxonomic relations. NeuroImage, 2021, 224, 117405.	4.2	21
107	The Natural History of Late-stage "Pure―Semantic Dementia. Neurocase, 2006, 12, 1-14.	0.6	20
108	Unpicking the Semantic Impairment in Alzheimer's Disease: Qualitative Changes with Disease Severity. Behavioural Neurology, 2012, 25, 23-34.	2.1	20

#	Article	IF	CITATIONS
109	Demonstrating the Qualitative Differences between Semantic Aphasia and Semantic Dementia: A Novel Exploration of Nonverbal Semantic Processing. Behavioural Neurology, 2013, 26, 7-20.	2.1	20
110	tDCS to temporoparietal cortex during familiarisation enhances the subsequent phonological coherence of nonwords in immediate serial recall. Cortex, 2015, 63, 132-144.	2.4	20
111	Perceptual coupling and decoupling of the default mode network during mind-wandering and reading. ELife, 2022, 11, .	6.0	20
112	Phonological learning in semantic dementia. Neuropsychologia, 2011, 49, 1208-1218.	1.6	19
113	Individual variation in patterns of task focused, and detailed, thought are uniquely associated within the architecture of the medial temporal lobe. NeuroImage, 2019, 202, 116045.	4.2	19
114	The use of cueing to alleviate recurrent verbal perseverations: Evidence from transcortical sensory aphasia. Aphasiology, 2008, 22, 363-382.	2.2	17
115	Deregulated semantic cognition contributes to objectâ€use deficits in <scp>A</scp> lzheimer's disease: A comparison with semantic aphasia and semantic dementia. Journal of Neuropsychology, 2015, 9, 219-241.	1.4	17
116	How does linguistic knowledge contribute to short-term memory? Contrasting effects of impaired semantic knowledge and executive control. Aphasiology, 2012, 26, 383-403.	2.2	15
117	Semantic categorisation of a word supports its phonological integrity in verbal short-term memory. Journal of Memory and Language, 2015, 84, 128-138.	2.1	15
118	rTMS evidence for a dissociation in short-term memory for spoken words and nonwords. Cortex, 2019, 112, 5-22.	2.4	14
119	Distinct patterns of thought mediate the link between brain functional connectomes and well-being. Network Neuroscience, 2020, 4, 637-657.	2.6	14
120	N-backer: An auditory n-back task with automatic scoring of spoken responses. Behavior Research Methods, 2011, 43, 888-896.	4.0	13
121	An individual differences analysis of the neurocognitive architecture of the semantic system at rest. Brain and Cognition, 2016, 109, 112-123.	1.8	13
122	Control the source: Source memory for semantic, spatial and self-related items in patients with LIFG lesions. Cortex, 2019, 119, 165-183.	2.4	13
123	Newly-acquired words are more phonologically robust in verbal short-term memory when they have associated semantic representations. Neuropsychologia, 2017, 98, 85-97.	1.6	12
124	That's me in the spotlight: neural basis of individual differences in self-consciousness. Social Cognitive and Affective Neuroscience, 2017, 12, 1384-1393.	3.0	12
125	Individual variation in the propensity for prospective thought is associated with functional integration between visual and retrosplenial cortex. Cortex, 2018, 99, 224-234.	2.4	12
126	Reduced semantic control in older adults is linked to intrinsic DMN connectivity. Neuropsychologia, 2019, 132, 107133.	1.6	12

#	Article	IF	CITATIONS
127	Emotion and location cues bias conceptual retrieval in people with deficient semantic control. Neuropsychologia, 2019, 131, 294-305.	1.6	12
128	Precision rehabilitation for aphasia by patient age, sex, aphasia severity, and time since stroke? A prespecified, systematic review-based, individual participant data, network, subgroup meta-analysis. International Journal of Stroke, 2022, 17, 1067-1077.	5.9	12
129	Hello, is that me you are looking for? A re-examination of the role of the DMN in social and self relevant aspects of off-task thought. PLoS ONE, 2019, 14, e0216182.	2.5	11
130	Unpicking the semantic impairment in Alzheimer's disease: qualitative changes with disease severity. Behavioural Neurology, 2012, 25, 23-34.	2.1	11
131	Semantic control and modality: An input processing deficit in aphasia leading to deregulated semantic cognition in a single modality. Neuropsychologia, 2013, 51, 1998-2015.	1.6	10
132	Keeping it together: Semantic coherence stabilizes phonological sequences in short-term memory. Memory and Cognition, 2018, 46, 426-437.	1.6	10
133	Word up – Experiential and neurocognitive evidence for associations between autistic symptomology and a preference for thinking in the form of words. Cortex, 2020, 128, 88-106.	2.4	10
134	Intrinsic connectivity of anterior temporal lobe relates to individual differences in semantic retrieval for landmarks. Cortex, 2021, 134, 76-91.	2.4	10
135	Induction of Semantic Impairments Using rTMS: Evidence for the Hub-And-Spoke Semantic Theory. Behavioural Neurology, 2010, 23, 217-219.	2.1	9
136	Domain-specific control of semantic cognition: A dissociation within patients with semantic working memory deficits. Aphasiology, 2013, 27, 740-764.	2.2	9
137	Theta/delta coupling across cortical laminae contributes to semantic cognition. Journal of Neurophysiology, 2019, 121, 1150-1161.	1.8	9
138	Imagining Sounds and Images: Decoding the Contribution of Unimodal and Transmodal Brain Regions to Semantic Retrieval in the Absence of Meaningful Input. Journal of Cognitive Neuroscience, 2019, 31, 1599-1616.	2.3	9
139	Impaired emotion perception and categorization in semantic aphasia. Neuropsychologia, 2021, 162, 108052.	1.6	9
140	Mapping lesion, structural disconnection, and functional disconnection to symptoms in semantic aphasia. Brain Structure and Function, 2022, 227, 3043-3061.	2.3	9
141	Paced reading in semantic dementia: Word knowledge contributes to phoneme binding in rapid speech production. Neuropsychologia, 2012, 50, 723-732.	1.6	8
142	Knowing me, knowing you: Resting-state functional connectivity of ventromedial prefrontal cortex dissociates memory related to self from a familiar other. Brain and Cognition, 2017, 113, 65-75.	1.8	8
143	A role for consolidation in cross-modal category learning. Neuropsychologia, 2018, 108, 50-60.	1.6	8
144	Neurocognitive patterns dissociating semantic processing from executive control are linked to more detailed off-task mental time travel. Scientific Reports, 2020, 10, 11904.	3.3	8

#	Article	IF	CITATIONS
145	Linking individual differences in semantic cognition to white matter microstructure. Neuropsychologia, 2020, 141, 107438.	1.6	8
146	Age-related changes in ongoing thought relate to external context and individual cognition. Consciousness and Cognition, 2021, 96, 103226.	1.5	8
147	Demonstrating the qualitative differences between semantic aphasia and semantic dementia: a novel exploration of nonverbal semantic processing. Behavioural Neurology, 2013, 26, 7-20.	2.1	8
148	Interactions between the neural correlates of dispositional internally directed thought and visual imagery. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190691.	4.0	7
149	Multilingualism in semantic dementia: language-dependent lexical retrieval from degraded conceptual representations. Aphasiology, 2021, 35, 240-266.	2.2	7
150	Strong and long: Effects of word length on phonological binding in verbal short-term memory. Quarterly Journal of Experimental Psychology, 2011, 64, 241-260.	1.1	6
151	Patterns of on-task thought in older age are associated with changes in functional connectivity between temporal and prefrontal regions. Brain and Cognition, 2019, 132, 118-128.	1.8	6
152	A Structure–Function Substrate of Memory for Spatial Configurations in Medial and Lateral Temporal Cortices. Cerebral Cortex, 2021, 31, 3213-3225.	2.9	6
153	Individual differences in gradients of intrinsic connectivity within the semantic network relate to distinct aspects of semantic cognition. Cortex, 2022, 150, 48-60.	2.4	6
154	Perceptual coupling and decoupling are associated with individual differences in working memory encoding and maintenance. Cerebral Cortex, 2022, 32, 3959-3974.	2.9	5
155	Context free and context-dependent conceptual representation in the brain. Cerebral Cortex, 2022, 33, 152-166.	2.9	5
156	The interplay between control processes and feature relevance: Evidence from dual-task methodology. Quarterly Journal of Experimental Psychology, 2020, 73, 384-395.	1.1	4
157	Individual differences in verbal short-term memory and reading aloud: Semantic compensation for weak phonological processing across tasks Journal of Experimental Psychology: Learning Memory and Cognition, 2019, 45, 1815-1831.	0.9	4
158	Intrinsic connectivity of left ventrolateral prefrontal cortex predicts individual differences in controlled semantic retrieval. NeuroImage, 2022, 246, 118760.	4.2	4
159	Damage to temporoparietal cortex is sufficient for impaired semantic control. Cortex, 2022, 156, 71-85.	2.4	4
160	Missing the forest because of the trees: slower alternations during binocular rivalry are associated with lower levels of visual detail during ongoing thought. Neuroscience of Consciousness, 2020, 2020, niaa020.	2.6	3
161	Consistently inconsistent: Multimodal episodic deficits in semantic aphasia. Neuropsychologia, 2020, 140, 107392.	1.6	3
162	Utilising a systematic review-based approach to create a database of individual participant data for meta- and network meta-analyses: the RELEASE database of aphasia after stroke. Aphasiology, 2022, 36, 513-533.	2.2	3

#	Article	IF	CITATIONS
163	Motivated semantic control: Exploring the effects of extrinsic reward and selfâ€reference on semantic retrieval in semantic aphasia. Journal of Neuropsychology, 2022, 16, 407-433.	1.4	3
164	Investigating the Elements of Thought. , 2018, , .		2
165	When comprehension elicits incomprehension: Deterioration of semantic categorisation in the absence of stimulus repetition. Quarterly Journal of Experimental Psychology, 2018, 71, 1817-1843.	1.1	2
166	A neuroscientific approach to exploring fundamental questions in VR. IS&T International Symposium on Electronic Imaging, 2018, 2018, 435-1-435-6.	0.4	2
167	Deficits of semantic control disproportionately affect low-relevance conceptual features: evidence from semantic aphasia. Aphasiology, 2021, 35, 1448-1462.	2.2	1
168	The influence of language dominance and domain-general executive control on semantic context effects. Language, Cognition and Neuroscience, 2021, 36, 867-884.	1.2	1
169	Training flexible conceptual retrieval in post-stroke aphasia. Neuropsychological Rehabilitation, 2021, , 1-27.	1.6	Ο