
Jonathan W Yewdell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4227862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Remarkable Nilabh Shastri: Voices of his students, mentees, and colleagues. Molecular Immunology, 2022, 143, 100-104.	2.2	2
2	MHC Class I Immunopeptidome: Past, Present, and Future. Molecular and Cellular Proteomics, 2022, 21, 100230.	3.8	23
3	MLN4924 Inhibits Defective Ribosomal Product Antigen Presentation Independently of Direct NEDDylation of Protein Antigens. Journal of Immunology, 2022, , ji2100584.	0.8	0
4	Broadly neutralizing antibodies target the coronavirus fusion peptide. Science, 2022, 377, 728-735.	12.6	111
5	Original Antigenic Sin: How Original? How Sinful?. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038786.	6.2	58
6	Genome-wide Screens Identify Lineage- and Tumor-Specific Genes Modulating MHC-I- and MHC-II-Restricted Immunosurveillance of Human Lymphomas. Immunity, 2021, 54, 116-131.e10.	14.3	72
7	A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nature Reviews Immunology, 2021, 21, 116-128.	22.7	139
8	Immune MAL2-practice: breast cancer immunoevasion via MHC class I degradation. Journal of Clinical Investigation, 2021, 131, .	8.2	9
9	Most non-canonical proteins uniquely populate the proteome or immunopeptidome. Cell Reports, 2021, 34, 108815.	6.4	120
10	Individuals cannot rely on COVID-19 herd immunity: Durable immunity to viral disease is limited to viruses with obligate viremic spread. PLoS Pathogens, 2021, 17, e1009509.	4.7	36
11	Cutting Edge: Myosin 18A Is a Novel Checkpoint Regulator in B Cell Differentiation and Antibody-Mediated Immunity. Journal of Immunology, 2021, 206, 2521-2526.	0.8	5
12	Single-cell BCR and transcriptome analysis after influenza infection reveals spatiotemporal dynamics of antigen-specific B cells. Cell Reports, 2021, 35, 109286.	6.4	67
13	Severe Acute Respiratory Syndrome Coronavirus 2 Seroassay Performance and Optimization in a Population With High Background Reactivity in Mali. Journal of Infectious Diseases, 2021, 224, 2001-2009.	4.0	34
14	Antigenic drift: Understanding COVID-19. Immunity, 2021, 54, 2681-2687.	14.3	74
15	A single intranasal dose of a live-attenuated parainfluenza virus-vectored SARS-CoV-2 vaccine is protective in hamsters. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	43
16	Decoding mRNA translatability and stability from the 5′ UTR. Nature Structural and Molecular Biology, 2020, 27, 814-821.	8.2	106
17	An R848-Conjugated Influenza Virus Vaccine Elicits Robust Immunoglobulin G to Hemagglutinin Stem in a Newborn Nonhuman Primate Model. Journal of Infectious Diseases, 2020, 224, 351-359.	4.0	14
18	Hybrid Gene Origination Creates Human-Virus Chimeric Proteins during Infection. Cell, 2020, 181, 1502-1517.e23.	28.9	33

#	Article	IF	CITATIONS
19	DRiPs get molecular. Current Opinion in Immunology, 2020, 64, 130-136.	5.5	27
20	Host CD8α ⁺ and CD103 ⁺ dendritic cells prime transplant antigenâ€specific CD8 ⁺ T cells via crossâ€dressing. Immunology and Cell Biology, 2020, 98, 563-576.	2.3	8
21	Influenza-infected newborn and adult monkeys exhibit a strong primary antibody response to hemagglutinin stem. JCI Insight, 2020, 5, .	5.0	13
22	A SIINFEKL-Based System to Measure MHC Class I Antigen Presentation Efficiency and Kinetics. Methods in Molecular Biology, 2019, 1988, 109-122.	0.9	20
23	Peptide Channeling: The Key to MHC Class I Immunosurveillance?. Trends in Cell Biology, 2019, 29, 929-939.	7.9	39
24	Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance. Molecular Cell, 2019, 73, 1162-1173.e5.	9.7	81
25	Neuraminidase inhibition contributes to influenza A virus neutralization by anti-hemagglutinin stem antibodies. Journal of Experimental Medicine, 2019, 216, 304-316.	8.5	63
26	Influenza A Virus Infection Induces Viral and Cellular Defective Ribosomal Products Encoded by Alternative Reading Frames. Journal of Immunology, 2019, 202, 3370-3380.	0.8	23
27	Influenza Hemagglutinin and Neuraminidase: Yin–Yang Proteins Coevolving to Thwart Immunity. Viruses, 2019, 11, 346.	3.3	122
28	Lymph node conduits transport virions for rapid T cell activation. Nature Immunology, 2019, 20, 602-612.	14.5	74
29	Human Influenza A Virus Hemagglutinin Glycan Evolution Follows a Temporal Pattern to a Glycan Limit. MBio, 2019, 10, .	4.1	74
30	Myc controls a distinct transcriptional program in fetal thymic epithelial cells that determines thymus growth. Nature Communications, 2019, 10, 5498.	12.8	39
31	Flu DRiPs in MHC Class I Immunosurveillance. Virologica Sinica, 2019, 34, 162-167.	3.0	13
32	Immunoribosomes: Where's there's fire, there's fire. Molecular Immunology, 2019, 113, 38-42.	2.2	23
33	Vaccine induction of antibodies and tissue-resident CD8+ T cells enhances protection against mucosal SHIV-infection in young macaques. JCI Insight, 2019, 4, .	5.0	50
34	Subdominance and poor intrinsic immunogenicity limit humoral immunity targeting influenza HA stem. Journal of Clinical Investigation, 2019, 129, 850-862.	8.2	78
35	Intranasal Live Influenza Vaccine Priming Elicits Localized B Cell Responses in Mediastinal Lymph Nodes. Journal of Virology, 2018, 92, .	3.4	30
36	Enhancing responses to cancer immunotherapy. Science, 2018, 359, 516-517.	12.6	39

#	Article	IF	CITATIONS
37	Antibody Immunodominance: The Key to Understanding Influenza Virus Antigenic Drift. Viral Immunology, 2018, 31, 142-149.	1.3	90
38	Influenza A Virus Negative Strand RNA Is Translated for CD8+ T Cell Immunosurveillance. Journal of Immunology, 2018, 201, 1222-1228.	0.8	22
39	Influenza A virus hemagglutinin glycosylation compensates for antibody escape fitness costs. PLoS Pathogens, 2018, 14, e1006796.	4.7	59
40	Defining B cell immunodominance to viruses. Nature Immunology, 2017, 18, 456-463.	14.5	218
41	Varied Role of Ubiquitylation in Generating MHC Class I Peptide Ligands. Journal of Immunology, 2017, 198, 3835-3845.	0.8	38
42	Autoimmune T cell recognition of alternative-reading-frame-encoded peptides. Nature Medicine, 2017, 23, 409-410.	30.7	7
43	Influenza A virus hemagglutinin specific antibodies interfere with virion neuraminidase activity via two distinct mechanisms. Virology, 2017, 500, 178-183.	2.4	39
44	Protein Translation Activity: A New Measure of Host Immune Cell Activation. Journal of Immunology, 2016, 197, 1498-1506.	0.8	21
45	Defining Viral Defective Ribosomal Products: Standard and Alternative Translation Initiation Events Generate a Common Peptide from Influenza A Virus M2 and M1 mRNAs. Journal of Immunology, 2016, 196, 3608-3617.	0.8	25
46	A Simple Flow-Cytometric Method Measuring B Cell Surface Immunoglobulin Avidity Enables Characterization of Affinity Maturation to Influenza A Virus. MBio, 2015, 6, e01156.	4.1	34
47	CXCR3 Chemokine Receptor Enables Local CD8+ T Cell Migration for the Destruction of Virus-Infected Cells. Immunity, 2015, 42, 524-537.	14.3	184
48	Lamprey VLRB response to influenza virus supports universal rules of immunogenicity and antigenicity. ELife, 2015, 4, .	6.0	58
49	Influenza A virus nucleoprotein selectively decreases neuraminidase gene-segment packaging while enhancing viral fitness and transmissibility. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16854-16859.	7.1	64
50	Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. Journal of Leukocyte Biology, 2014, 95, 551-562.	3.3	127
51	Flow Cytometry Reveals that H5N1 Vaccination Elicits Cross-Reactive Stem-Directed Antibodies from Multiple Ig Heavy-Chain Lineages. Journal of Virology, 2014, 88, 4047-4057.	3.4	220
52	Anatomically Restricted Synergistic Antiviral Activities of Innate and Adaptive Immune Cells in the Skin. Cell Host and Microbe, 2013, 13, 155-168.	11.0	76
53	Defining Influenza A Virus Hemagglutinin Antigenic Drift by Sequential Monoclonal Antibody Selection. Cell Host and Microbe, 2013, 13, 314-323.	11.0	97
54	Mixed Proteasomes Function To Increase Viral Peptide Diversity and Broaden Antiviral CD8+ T Cell Responses. Journal of Immunology, 2013, 191, 52-59.	0.8	59

#	Article	IF	CITATIONS
55	Structure and accessibility of HA trimers on intact 2009 H1N1 pandemic influenza virus to stem region-specific neutralizing antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4592-4597.	7.1	99
56	Nuclear translation visualized by ribosome-bound nascent chain puromycylation. Journal of Cell Biology, 2012, 197, 45-57.	5.2	255
57	Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9047-9052.	7.1	371
58	MHC class I antigen processing distinguishes endogenous antigens based on their translation from cellular vs. viral mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7025-7030.	7.1	33
59	Endogenous viral antigen processing generates peptide-specific MHC class I cell-surface clusters. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15407-15412.	7.1	65
60	Chemokines control naive CD8+ T cell selection of optimal lymph node antigen presenting cells. Journal of Experimental Medicine, 2011, 208, 2511-2524.	8.5	80
61	Out with the old, in with the new? Comparing methods for measuring protein degradation. Cell Biology International, 2011, 35, 457-462.	3.0	53
62	Distinct Pathways Generate Peptides from Defective Ribosomal Products for CD8+ T Cell Immunosurveillance. Journal of Immunology, 2011, 186, 2065-2072.	0.8	55
63	Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1417-22.	7.1	122
64	Influenza A Virus Hemagglutinin Antibody Escape Promotes Neuraminidase Antigenic Variation and Drug Resistance. PLoS ONE, 2011, 6, e15190.	2.5	67
65	Compartmentalized MHC class I antigen processing enhances immunosurveillance by circumventing the law of mass action. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6964-6969.	7.1	68
66	Defective Ribosomal Products Are the Major Source of Antigenic Peptides Endogenously Generated from Influenza A Virus Neuraminidase. Journal of Immunology, 2010, 184, 1419-1424.	0.8	40
67	RNA Polymerase II Inhibitors Dissociate Antigenic Peptide Generation from Normal Viral Protein Synthesis: A Role for Nuclear Translation in Defective Ribosomal Product Synthesis?. Journal of Immunology, 2010, 185, 6728-6733.	0.8	38
68	Monoclonal antibodies specific for discontinuous epitopes direct refolding of influenza A virus hemagglutinin. Molecular Immunology, 2010, 47, 1132-1136.	2.2	15
69	Hemagglutinin Receptor Binding Avidity Drives Influenza A Virus Antigenic Drift. Science, 2009, 326, 734-736.	12.6	429
70	Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nature Immunology, 2008, 9, 155-165.	14.5	240
71	Viral Alteration of Cellular Translational Machinery Increases Defective Ribosomal Products. Journal of Virology, 2007, 81, 7220-7229.	3.4	41
72	Plumbing the sources of endogenous MHC class I peptide ligands. Current Opinion in Immunology, 2007, 19, 79-86.	5.5	70

#	Article	IF	CITATIONS
73	Confronting Complexity: Real-World Immunodominance in Antiviral CD8+ T Cell Responses. Immunity, 2006, 25, 533-543.	14.3	333
74	The DRiP hypothesis decennial: support, controversy, refinement and extension. Trends in Immunology, 2006, 27, 368-373.	6.8	192
75	Poxvirus CD8 + T-Cell Determinants and Cross-Reactivity in BALB/c Mice. Journal of Virology, 2006, 80, 6318-6323.	3.4	109
76	The seven dirty little secrets of major histocompatibility complex class I antigen processing. Immunological Reviews, 2005, 207, 8-18.	6.0	73
77	Immunoproteasomes: Regulating the regulator. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9089-9090.	7.1	54
78	Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. Journal of Experimental Medicine, 2005, 201, 95-104.	8.5	286
79	CD8+ T Cell Cross-Priming via Transfer of Proteasome Substrates. Science, 2004, 304, 1318-1321.	12.6	268
80	Comparative immunopeptidomics of humans and their pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13268-13272.	7.1	38
81	Reversal in the Immunodominance Hierarchy in Secondary CD8+ T Cell Responses to Influenza A Virus: Roles for Cross-Presentation and Lysis-Independent Immunodomination. Journal of Immunology, 2004, 173, 5021-5027.	0.8	70
82	Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature, 2004, 427, 252-256.	27.8	314
83	Systematic Search Fails to Detect Immunogenic MHC Class-I-Restricted Determinants Encoded by Influenza A Virus Noncoding Sequences. Virology, 2003, 305, 50-54.	2.4	11
84	Making sense of mass destruction: quantitating MHC class I antigen presentation. Nature Reviews Immunology, 2003, 3, 952-961.	22.7	377
85	Quantitating Protein Synthesis, Degradation, and Endogenous Antigen Processing. Immunity, 2003, 18, 343-354.	14.3	461
86	IMMUNOLOGY: Hide and Seek in the Peptidome. Science, 2003, 301, 1334-1335.	12.6	39
87	Mice Deficient in Perforin, CD4 + T Cells, or CD28-Mediated Signaling Maintain the Typical Immunodominance Hierarchies of CD8 + T-Cell Responses to Influenza Virus. Journal of Virology, 2002, 76, 10332-10337.	3.4	50
88	Viral interference with antigen presentation. Nature Immunology, 2002, 3, 1019-1025.	14.5	226
89	Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. Nature Immunology, 2002, 3, 265-271.	14.5	324
90	A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine, 2001, 7, 1306-1312.	30.7	901

6

#	Article	IF	CITATIONS
91	Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature, 2001, 409, 1055-1060.	27.8	844
92	Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature, 2000, 404, 770-774.	27.8	1,328
93	Dissecting the Multifactorial Causes of Immunodominance in Class I–Restricted T Cell Responses to Viruses. Immunity, 2000, 12, 83-93.	14.3	309
94	Intracellular Localization of Proteasomal Degradation of a Viral Antigen. Journal of Cell Biology, 1999, 146, 113-124.	5.2	205
95	Modification of Cysteine Residues In Vitro and In Vivo Affects the Immunogenicity and Antigenicity of Major Histocompatibility Complex Class l–restricted Viral Determinants. Journal of Experimental Medicine, 1999, 189, 1757-1764.	8.5	105
96	Localization, Quantitation, and In Situ Detection of Specific Peptide–MHC Class I Complexes Using a Monoclonal Antibody. Immunity, 1997, 6, 715-726.	14.3	641
97	Hybrid antibody-mediated lysis of virus-infected cells. European Journal of Immunology, 1987, 17, 571-574.	2.9	25
98	The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell, 1982, 31, 417-427.	28.9	1,030
99	Antigenic structure of influenza virus haemagglutinin defined by hybridoma antibodies. Nature, 1981, 290, 713-717.	27.8	466