## Franz Berthiller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/422763/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The acyltransferase PMAT1 malonylates brassinolide glucoside. Journal of Biological Chemistry, 2021, 296, 100424.                                                                                                | 3.4 | 4         |
| 2  | Identification and Functional Characterization of the Gene Cluster Responsible for Fusaproliferin<br>Biosynthesis in Fusarium proliferatum. Toxins, 2021, 13, 468.                                               | 3.4 | 8         |
| 3  | Development and Validation of an LC-MS/MS Based Method for the Determination of Deoxynivalenol and Its Modified Forms in Maize. Toxins, 2021, 13, 600.                                                           | 3.4 | 11        |
| 4  | Adapting an Ergosterol Extraction Method with Marine Yeasts for the Quantification of Oceanic<br>Fungal Biomass. Journal of Fungi (Basel, Switzerland), 2021, 7, 690.                                            | 3.5 | 8         |
| 5  | Novel analytical methods to study the fate of mycotoxins during thermal food processing. Analytical and Bioanalytical Chemistry, 2020, 412, 9-16.                                                                | 3.7 | 41        |
| 6  | Effect of Temperature, Water Activity and Carbon Dioxide on Fungal Growth and Mycotoxin<br>Production of Acclimatised Isolates of Fusarium verticillioides and F. graminearum. Toxins, 2020, 12,<br>478.         | 3.4 | 47        |
| 7  | The BAHD Acyltransferase BIA1 Uses Acetyl-CoA for Catabolic Inactivation of Brassinosteroids. Plant<br>Physiology, 2020, 184, 23-26.                                                                             | 4.8 | 5         |
| 8  | Zearalenone and ß-Zearalenol But Not Their Glucosides Inhibit Heat Shock Protein 90 ATPase Activity.<br>Frontiers in Pharmacology, 2019, 10, 1160.                                                               | 3.5 | 5         |
| 9  | Determination of aflatoxin biomarkers in excreta and ileal content of chickens. Poultry Science, 2019, 98, 5551-5561.                                                                                            | 3.4 | 9         |
| 10 | The Influence of Processing Parameters on the Mitigation of Deoxynivalenol during Industrial Baking.<br>Toxins, 2019, 11, 317.                                                                                   | 3.4 | 23        |
| 11 | The Fusarium metabolite culmorin suppresses the in vitro glucuronidation of deoxynivalenol.<br>Archives of Toxicology, 2019, 93, 1729-1743.                                                                      | 4.2 | 30        |
| 12 | Metabolism of nivalenol and nivalenol-3-glucoside in rats. Toxicology Letters, 2019, 306, 43-52.                                                                                                                 | 0.8 | 9         |
| 13 | Cross-reactivity of commercial and non-commercial deoxynivalenol-antibodies to emerging<br>trichothecenes and common deoxynivalenol-derivatives. World Mycotoxin Journal, 2019, 12, 45-53.                       | 1.4 | 10        |
| 14 | Deoxynivalenol-3-sulphate is the major metabolite of dietary deoxynivalenol in eggs of laying hens.<br>World Mycotoxin Journal, 2019, 12, 245-255.                                                               | 1.4 | 7         |
| 15 | Untargeted LC–MS based 13C labelling provides a full mass balance of deoxynivalenol and its<br>degradation products formed during baking of crackers, biscuits and bread. Food Chemistry, 2019, 279,<br>303-311. | 8.2 | 23        |
| 16 | Chemical synthesis of culmorin metabolites and their biologic role in culmorin and acetyl-culmorin treated wheat cells. Organic and Biomolecular Chemistry, 2018, 16, 2043-2048.                                 | 2.8 | 18        |
| 17 | Developments in mycotoxin analysis: an update for 2016-2017. World Mycotoxin Journal, 2018, 11, 5-32.                                                                                                            | 1.4 | 57        |
| 18 | Less-toxic rearrangement products of NX-toxins are formed during storage and food processing.<br>Toxicology Letters, 2018, 284, 205-212.                                                                         | 0.8 | 18        |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The contribution of lot-to-lot variation to the measurement uncertainty of an LC-MS-based multi-mycotoxin assay. Analytical and Bioanalytical Chemistry, 2018, 410, 4409-4418.                                                                          | 3.7 | 28        |
| 20 | Application of biomarker methods to investigate FUMzyme mediated gastrointestinal hydrolysis of fumonisins in pigs. World Mycotoxin Journal, 2018, 11, 201-214.                                                                                         | 1.4 | 16        |
| 21 | UDP-Glucosyltransferases from Rice, Brachypodium, and Barley: Substrate Specificities and Synthesis of Type A and B Trichothecene-3-O-β-d-glucosides. Toxins, 2018, 10, 111.                                                                            | 3.4 | 35        |
| 22 | In vivo contribution of deoxynivalenol-3-β-d-glucoside to deoxynivalenol exposure in broiler chickens<br>and pigs: oral bioavailability, hydrolysis and toxicokinetics. Archives of Toxicology, 2017, 91, 699-712.                                      | 4.2 | 75        |
| 23 | Formulation and processing factors affecting trichothecene mycotoxins within industrial biscuit-making. Food Chemistry, 2017, 229, 597-603.                                                                                                             | 8.2 | 30        |
| 24 | A barley UDP-glucosyltransferase inactivates nivalenol and provides Fusarium Head Blight resistance<br>in transgenic wheat. Journal of Experimental Botany, 2017, 68, 2187-2197.                                                                        | 4.8 | 74        |
| 25 | Developments in mycotoxin analysis: an update for 2015-2016. World Mycotoxin Journal, 2017, 10, 5-29.                                                                                                                                                   | 1.4 | 69        |
| 26 | Determinants and Expansion of Specificity in a Trichothecene UDP-Glucosyltransferase from <i>Oryza sativa</i> . Biochemistry, 2017, 56, 6585-6596.                                                                                                      | 2.5 | 30        |
| 27 | Glucuronidation of deoxynivalenol (DON) by different animal species: identification of iso-DON<br>glucuronides and iso-deepoxy-DON glucuronides as novel DON metabolites in pigs, rats, mice, and<br>cows. Archives of Toxicology, 2017, 91, 3857-3872. | 4.2 | 34        |
| 28 | Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. Journal of Agricultural and Food Chemistry, 2017, 65, 7052-7070.                                                                                                                | 5.2 | 259       |
| 29 | Mycotoxin testing: From Multi-toxin analysis to metabolomics. Mycotoxins, 2017, 67, 11-16.                                                                                                                                                              | 0.2 | 13        |
| 30 | Metabolism of Zearalenone and Its Major Modified Forms in Pigs. Toxins, 2017, 9, 56.                                                                                                                                                                    | 3.4 | 121       |
| 31 | Sex Is a Determinant for Deoxynivalenol Metabolism and Elimination in the Mouse. Toxins, 2017, 9, 240.                                                                                                                                                  | 3.4 | 22        |
| 32 | Mycotoxin profiling of 1000 beer samples with a special focus on craft beer. PLoS ONE, 2017, 12, e0185887.                                                                                                                                              | 2.5 | 75        |
| 33 | Synthesis of Mono- and Di-Glucosides of Zearalenone and α-/β-Zearalenol by Recombinant Barley<br>Glucosyltransferase HvUGT14077. Toxins, 2017, 9, 58.                                                                                                   | 3.4 | 24        |
| 34 | Identification and Characterization of Carboxylesterases from Brachypodium distachyon<br>Deacetylating Trichothecene Mycotoxins. Toxins, 2016, 8, 6.                                                                                                    | 3.4 | 17        |
| 35 | Pentahydroxyscirpene—Producing Strains, Formation In Planta, and Natural Occurrence. Toxins, 2016,<br>8, 295                                                                                                                                            | 3.4 | 1         |
| 36 | Metabolism of HT-2 Toxin and T-2 Toxin in Oats. Toxins, 2016, 8, 364.                                                                                                                                                                                   | 3.4 | 31        |

| #  | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Crystal Structure of Os79 (Os04g0206600) from <i>Oryza sativa</i> : A UDP-glucosyltransferase<br>Involved in the Detoxification of Deoxynivalenol. Biochemistry, 2016, 55, 6175-6186.                                                                                           | 2.5 | 49        |
| 38 | Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Research, 2016, 32, 179-205.                                                                                                                                                      | 2.3 | 462       |
| 39 | Study on the uptake and deglycosylation of the masked forms of zearalenone in human intestinal<br>Caco-2 cells. Food and Chemical Toxicology, 2016, 98, 232-239.                                                                                                                | 3.6 | 29        |
| 40 | Safe food and feed through an integrated toolbox for mycotoxin management: the MyToolBox<br>approach. World Mycotoxin Journal, 2016, 9, 487-495.                                                                                                                                | 1.4 | 34        |
| 41 | Urinary deoxynivalenol (DON) and zearalenone (ZEA) as biomarkers of DON and ZEA exposure of pigs.<br>Mycotoxin Research, 2016, 32, 69-75.                                                                                                                                       | 2.3 | 15        |
| 42 | Comparative inÂvitro cytotoxicity of modified deoxynivalenol on porcine intestinal epithelial cells.<br>Food and Chemical Toxicology, 2016, 95, 103-109.                                                                                                                        | 3.6 | 55        |
| 43 | Intestinal toxicity of the masked mycotoxin deoxynivalenol-3-β-d-glucoside. Archives of Toxicology, 2016, 90, 2037-2046.                                                                                                                                                        | 4.2 | 95        |
| 44 | New tricks of an old enemy: isolates of <scp><i>F</i></scp> <i>usarium graminearum</i> produce a type<br><scp>A</scp> trichothecene mycotoxin. Environmental Microbiology, 2015, 17, 2588-2600.                                                                                 | 3.8 | 145       |
| 45 | Transgenic Wheat Expressing a Barley UDP-Glucosyltransferase Detoxifies Deoxynivalenol and<br>Provides High Levels of Resistance to <i>Fusarium graminearum</i> . Molecular Plant-Microbe<br>Interactions, 2015, 28, 1237-1246.                                                 | 2.6 | 120       |
| 46 | Characterisation and determination of metabolites formed by microbial and enzymatic degradation of ergot alkaloids. World Mycotoxin Journal, 2015, 8, 393-404.                                                                                                                  | 1.4 | 6         |
| 47 | Occurrence of Fusarium head blight and mycotoxins as well as morphological identification<br>of <i>Fusarium</i> species in winter wheat in Kosovo. Cereal Research Communications, 2015, 43,<br>438-448.                                                                        | 1.6 | 3         |
| 48 | Biochemical Characterization of a Recombinant UDP-glucosyltransferase from Rice and Enzymatic<br>Production of Deoxynivalenol-3-O-β-D-glucoside. Toxins, 2015, 7, 2685-2700.                                                                                                    | 3.4 | 40        |
| 49 | Deoxynivalenol & Deoxynivalenol-3-Glucoside Mitigation through Bakery Production Strategies:<br>Effective Experimental Design within Industrial Rusk-Making Technology. Toxins, 2015, 7, 2773-2790.                                                                             | 3.4 | 33        |
| 50 | The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture:<br>Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and<br>15-Acetyl-DON-3-Sulfate. Toxins, 2015, 7, 3112-3126.                               | 3.4 | 30        |
| 51 | Metabolism of Deoxynivalenol and Deepoxy-Deoxynivalenol in Broiler Chickens, Pullets, Roosters and<br>Turkeys. Toxins, 2015, 7, 4706-4729.                                                                                                                                      | 3.4 | 51        |
| 52 | A Versatile Family 3 Glycoside Hydrolase from Bifidobacterium adolescentis Hydrolyzes β-Glucosides of<br>the Fusarium Mycotoxins Deoxynivalenol, Nivalenol, and HT-2 Toxin in Cereal Matrices. Applied and<br>Environmental Microbiology, 2015, 81, 4885-4893.                  | 3.1 | 26        |
| 53 | Simultaneous determination of major type A and B trichothecenes, zearalenone and certain modified<br>metabolites in Finnish cereal grains with a novel liquid chromatography-tandem mass spectrometric<br>method. Analytical and Bioanalytical Chemistry, 2015, 407, 4745-4755. | 3.7 | 133       |
| 54 | Hydrolysed fumonisin B1andN-(deoxy-D-fructos-1-yl)-fumonisin B1: stability and catabolic fate under simulated human gastrointestinal conditions. International Journal of Food Sciences and Nutrition, 2015, 66, 98-103.                                                        | 2.8 | 17        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Critical evaluation of indirect methods for the determination of deoxynivalenol and its conjugated forms in cereals. Analytical and Bioanalytical Chemistry, 2015, 407, 6009-6020.                                                           | 3.7 | 20        |
| 56 | Biotransformation of the Mycotoxin Deoxynivalenol in Fusarium Resistant and Susceptible Near<br>Isogenic Wheat Lines. PLoS ONE, 2015, 10, e0119656.                                                                                          | 2.5 | 93        |
| 57 | Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poultry Science, 2015, 94, 1298-1315.                                                                  | 3.4 | 150       |
| 58 | Aerobic and anaerobic <i>in vitro</i> testing of feed additives claiming to detoxify deoxynivalenol and zearalenone. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 922-933. | 2.3 | 21        |
| 59 | Developments in mycotoxin analysis: an update for 2013-2014. World Mycotoxin Journal, 2015, 8, 5-35.                                                                                                                                         | 1.4 | 38        |
| 60 | Determination of the Mycotoxin Content in Distiller's Dried Grain with Solubles Using a Multianalyte<br>UHPLC–MS/MS Method. Journal of Agricultural and Food Chemistry, 2015, 63, 9441-9451.                                                 | 5.2 | 36        |
| 61 | Metabolism of the Fusarium Mycotoxins T-2 Toxin and HT-2 Toxin in Wheat. Journal of Agricultural and Food Chemistry, 2015, 63, 7862-7872.                                                                                                    | 5.2 | 78        |
| 62 | Tracing the metabolism of HT-2 toxin and T-2 toxin in barley by isotope-assisted untargeted screening and quantitative LC-HRMS analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 8019-8033.                                       | 3.7 | 56        |
| 63 | Effects of orally administered fumonisin B1 (FB1), partially hydrolysed FB1, hydrolysed FB1 and<br>N-(1-deoxy-D-fructos-1-yl) FB1 on the sphingolipid metabolism in rats. Food and Chemical Toxicology,<br>2015, 76, 11-18.                  | 3.6 | 66        |
| 64 | Chapter 1. Introduction to Masked Mycotoxins. Issues in Toxicology, 2015, , 1-13.                                                                                                                                                            | 0.1 | 8         |
| 65 | Chapter 9. Concluding Remarks. Issues in Toxicology, 2015, , 189-193.                                                                                                                                                                        | 0.1 | 0         |
| 66 | Chapter 7. Animal Models for Masked Mycotoxin Studies. Issues in Toxicology, 2015, , 137-157.                                                                                                                                                | 0.1 | 0         |
| 67 | Analytical strategies for the determination of deoxynivalenol and its modified forms in beer: A mini<br>review Kvasný PrÅ⁻mysl, 2015, 61, 46-50.                                                                                             | 0.2 | Ο         |
| 68 | Determination of deoxynivalenol sulphonates in cereal samples: method development, validation and application. World Mycotoxin Journal, 2014, 7, 233-245.                                                                                    | 1.4 | 12        |
| 69 | Deoxynivalenol (DON) sulfonates as major DON metabolites in rats: from identification to biomarker method development, validation and application. Analytical and Bioanalytical Chemistry, 2014, 406, 7911-7924.                             | 3.7 | 33        |
| 70 | Methylthiodeoxynivalenol (MTD): insight into the chemistry, structure and toxicity of thia-Michael adducts of trichothecenes. Organic and Biomolecular Chemistry, 2014, 12, 5144.                                                            | 2.8 | 20        |
| 71 | Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol congeners on<br>proinflammatory cytokine and chemokine mRNA expression in the mouse. Toxicology and Applied<br>Pharmacology, 2014, 278, 107-115.                | 2.8 | 44        |
| 72 | Isolation and Structure Elucidation of Pentahydroxyscirpene, a Trichothecene Fusarium Mycotoxin.<br>Journal of Natural Products, 2014, 77, 188-192.                                                                                          | 3.0 | 10        |

| #  | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric<br>method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four<br>model food matrices. Journal of Chromatography A, 2014, 1362, 145-156. | 3.7 | 373       |
| 74 | Comparison of Anorectic and Emetic Potencies of Deoxynivalenol (Vomitoxin) to the Plant Metabolite<br>Deoxynivalenol-3-Glucoside and Synthetic Deoxynivalenol Derivatives EN139528 and EN139544.<br>Toxicological Sciences, 2014, 142, 167-181.                            | 3.1 | 38        |
| 75 | Zearalenone-16- <i>O</i> -glucoside: A New Masked Mycotoxin. Journal of Agricultural and Food<br>Chemistry, 2014, 62, 1181-1189.                                                                                                                                           | 5.2 | 81        |
| 76 | Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs. Toxicology Letters, 2014, 229, 190-197.                                                                                                                                                             | 0.8 | 140       |
| 77 | Determination of nivalenol in food and feed: an update. World Mycotoxin Journal, 2014, 7, 247-255.                                                                                                                                                                         | 1.4 | 5         |
| 78 | Bikinin-like inhibitors targeting GSK3/Shaggy-like kinases: characterisation of novel compounds and elucidation of their catabolism in planta. BMC Plant Biology, 2014, 14, 172.                                                                                           | 3.6 | 15        |
| 79 | Proposal of a comprehensive definition of modified and other forms of mycotoxins including<br>"masked―mycotoxins. Mycotoxin Research, 2014, 30, 197-205.                                                                                                                   | 2.3 | 268       |
| 80 | Developments in mycotoxin analysis: an update for 2012-2013. World Mycotoxin Journal, 2014, 7, 3-33.                                                                                                                                                                       | 1.4 | 74        |
| 81 | Determination of T-2 and HT-2 toxins in food and feed: an update. World Mycotoxin Journal, 2014, 7, 131-142.                                                                                                                                                               | 1.4 | 41        |
| 82 | Individual and combined roles of malonichrome, ferricrocin, and TAFC siderophores in Fusarium graminearum pathogenic and sexual development. Frontiers in Microbiology, 2014, 5, 759.                                                                                      | 3.5 | 60        |
| 83 | The Fusarium graminearum Genome Reveals More Secondary Metabolite Gene Clusters and Hints of<br>Horizontal Gene Transfer. PLoS ONE, 2014, 9, e110311.                                                                                                                      | 2.5 | 124       |
| 84 | Colour-encoded paramagnetic microbead-based direct inhibition triplex flow cytometric immunoassay<br>for ochratoxin A, fumonisins and zearalenone in cereals and cereal-based feed. Analytical and<br>Bioanalytical Chemistry, 2013, 405, 7783-7794.                       | 3.7 | 32        |
| 85 | Stable isotopic labelling-assisted untargeted metabolic profiling reveals novel conjugates of the mycotoxin deoxynivalenol in wheat. Analytical and Bioanalytical Chemistry, 2013, 405, 5031-5036.                                                                         | 3.7 | 102       |
| 86 | Survey of deoxynivalenol and its conjugates deoxynivalenol-3-glucoside and 3-acetyl-deoxynivalenol<br>in 374 beer samples. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure<br>and Risk Assessment, 2013, 30, 137-146.                      | 2.3 | 91        |
| 87 | Characterization of Three Deoxynivalenol Sulfonates Formed by Reaction of Deoxynivalenol with Sulfur Reagents. Journal of Agricultural and Food Chemistry, 2013, 61, 8941-8948.                                                                                            | 5.2 | 39        |
| 88 | Simultaneous preparation of $\hat{I}_{\pm}/\hat{I}^2$ -zearalenol glucosides and glucuronides. Carbohydrate Research, 2013, 373, 59-63.                                                                                                                                    | 2.3 | 22        |
| 89 | New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone.<br>Toxicology Letters, 2013, 220, 88-94.                                                                                                                                 | 0.8 | 165       |
| 90 | Investigations on <i>Fusarium</i> spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo. Food Additives and Contaminants: Part B Surveillance, 2013, 6, 237-243.                                                                                           | 2.8 | 14        |

| #   | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Transcriptomic characterization of two major <i><scp>F</scp>usarium</i> resistance quantitative<br>trait loci ( <scp>QTL</scp> s), <i><scp>F</scp>hb1</i> and <i><scp>Q</scp>fhs.ifaâ€<scp>5A</scp></i> ,<br>identifies novel candidate genes. Molecular Plant Pathology, 2013, 14, 772-785. | 4.2 | 132       |
| 92  | Masked mycotoxins: A review. Molecular Nutrition and Food Research, 2013, 57, 165-186.                                                                                                                                                                                                       | 3.3 | 633       |
| 93  | Development and validation of a (semi-)quantitative UHPLC-MS/MS method for the determination of 191 mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios. Analytical and Bioanalytical Chemistry, 2013, 405, 5087-5104.                                     | 3.7 | 137       |
| 94  | Functional Characterization of Two Clusters of <i>Brachypodium distachyon</i> UDP-Clycosyltransferases Encoding Putative Deoxynivalenol Detoxification Genes. Molecular<br>Plant-Microbe Interactions, 2013, 26, 781-792.                                                                    | 2.6 | 85        |
| 95  | Sulfation of β-resorcylic acid esters—first synthesis of zearalenone-14-sulfate. Tetrahedron Letters, 2013, 54, 3290-3293.                                                                                                                                                                   | 1.4 | 15        |
| 96  | Gentiobiosylation of β-Resorcylic Acid Esters and Lactones: First Synthesis and Characterization of Zearalenone-14-β,d-Gentiobioside. Synlett, 2013, 24, 1830-1834.                                                                                                                          | 1.8 | 5         |
| 97  | Transgenic Arabidopsis thaliana expressing a barley UDP-glucosyltransferase exhibit resistance to the mycotoxin deoxynivalenol. Journal of Experimental Botany, 2012, 63, 4731-4740.                                                                                                         | 4.8 | 92        |
| 98  | MetExtract: a new software tool for the automated comprehensive extraction of metabolite-derived LC/MS signals in metabolomics research. Bioinformatics, 2012, 28, 736-738.                                                                                                                  | 4.1 | 68        |
| 99  | Synthesis of deoxynivalenol-3-ß-D-O-glucuronide for its use as biomarker for dietary deoxynivalenol<br>exposure. World Mycotoxin Journal, 2012, 5, 127-132.                                                                                                                                  | 1.4 | 37        |
| 100 | Fusarium species, zearalenone and deoxynivalenol content in preharvest scabby wheat heads from Poland. World Mycotoxin Journal, 2012, 5, 133-141.                                                                                                                                            | 1.4 | 30        |
| 101 | Development, validation and application of an LC-MS/MS based method for the determination of deoxynivalenol and its conjugates in different types of beer. World Mycotoxin Journal, 2012, 5, 261-270.                                                                                        | 1.4 | 24        |
| 102 | Assessment of human deoxynivalenol exposure using an LC–MS/MS based biomarker method.<br>Toxicology Letters, 2012, 211, 85-90.                                                                                                                                                               | 0.8 | 145       |
| 103 | Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in rats. Toxicology Letters, 2012, 213, 367-373.                                                                                                                                                                               | 0.8 | 146       |
| 104 | Co-occurrence and statistical correlations between mycotoxins in feedstuffs collected in the<br>Asia–Oceania in 2010. Animal Feed Science and Technology, 2012, 178, 190-197.                                                                                                                | 2.2 | 40        |
| 105 | Fast and reproducible chemical synthesis of zearalenone-14-β,D-glucuronide. World Mycotoxin<br>Journal, 2012, 5, 289-296.                                                                                                                                                                    | 1.4 | 28        |
| 106 | Development and validation of a rapid multiâ€biomarker liquid chromatography/tandem mass<br>spectrometry method to assess human exposure to mycotoxins. Rapid Communications in Mass<br>Spectrometry, 2012, 26, 1533-1540.                                                                   | 1.5 | 121       |
| 107 | Developments in mycotoxin analysis: an update for 2010-2011. World Mycotoxin Journal, 2012, 5, 3-30.                                                                                                                                                                                         | 1.4 | 79        |
| 108 | Stable isotope dilution assay for the accurate determination of mycotoxins in maize by UHPLC-MS/MS. Analytical and Bioanalytical Chemistry, 2012, 402, 2675-2686.                                                                                                                            | 3.7 | 112       |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Isolation and Characterization of a New Less-Toxic Derivative of theFusariumMycotoxin<br>Diacetoxyscirpenol after Thermal Treatment. Journal of Agricultural and Food Chemistry, 2011, 59,<br>9709-9714. | 5.2 | 20        |
| 110 | Hydrolytic fate of deoxynivalenol-3-glucoside during digestion. Toxicology Letters, 2011, 206, 264-267.                                                                                                  | 0.8 | 216       |
| 111 | Cloning and heterologous expression of candidate DON-inactivating UDP-glucosyltranferases from rice and wheat in yeast. Plant Breeding and Seed Science, 2011, 64, .                                     | 0.1 | 2         |
| 112 | Developments in mycotoxin analysis: an update for 2009-2010. World Mycotoxin Journal, 2011, 4, 3-28.                                                                                                     | 1.4 | 44        |
| 113 | Direct quantification of deoxynivalenol glucuronide in human urine as biomarker of exposure to the<br>Fusarium mycotoxin deoxynivalenol. Analytical and Bioanalytical Chemistry, 2011, 401, 195-200.     | 3.7 | 57        |
| 114 | Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana.<br>BMC Plant Biology, 2011, 11, 51.                                                                    | 3.6 | 93        |
| 115 | Validation of a Candidate Deoxynivalenol-Inactivating UDP-Glucosyltransferase from Barley by<br>Heterologous Expression in Yeast. Molecular Plant-Microbe Interactions, 2010, 23, 977-986.               | 2.6 | 126       |
| 116 | Developments in mycotoxin analysis: an update for 2008-2009. World Mycotoxin Journal, 2010, 3, 3-23.                                                                                                     | 1.4 | 39        |
| 117 | Update on analytical methods for toxic pyrrolizidine alkaloids. Analytical and Bioanalytical Chemistry, 2010, 396, 327-338.                                                                              | 3.7 | 89        |
| 118 | Foreword. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk<br>Assessment, 2010, 27, 575-575.                                                                     | 2.3 | 5         |
| 119 | Transcriptome Analysis of the Barley–Deoxynivalenol Interaction: Evidence for a Role of Glutathione<br>in Deoxynivalenol Detoxification. Molecular Plant-Microbe Interactions, 2010, 23, 962-976.        | 2.6 | 140       |
| 120 | Simultaneous determination of deoxynivalenol, zearalenone, and their major masked metabolites in<br>cereal-based food by LC–MS–MS. Analytical and Bioanalytical Chemistry, 2009, 395, 1347-1354.         | 3.7 | 129       |
| 121 | Formation, determination and significance of masked and other conjugated mycotoxins. Analytical and Bioanalytical Chemistry, 2009, 395, 1243-1252.                                                       | 3.7 | 192       |
| 122 | Difficulties in fumonisin determination: the issue of hidden fumonisins. Analytical and Bioanalytical Chemistry, 2009, 395, 1335-1345.                                                                   | 3.7 | 107       |
| 123 | A reference-gene-based quantitative PCR method as a tool to determine Fusarium resistance in wheat.<br>Analytical and Bioanalytical Chemistry, 2009, 395, 1385-1394.                                     | 3.7 | 29        |
| 124 | Developments in mycotoxin analysis: an update for 2007-2008. World Mycotoxin Journal, 2009, 2, 3-21.                                                                                                     | 1.4 | 25        |
| 125 | Loss of Pyrrolizidine Alkaloids on Decomposition of Ragwort ( <i>Senecio jacobaea</i> ) as Measured by LC-TOF-MS. Journal of Agricultural and Food Chemistry, 2009, 57, 3669-3673.                       | 5.2 | 35        |
| 126 | Occurrence of Deoxynivalenol and Its Major Conjugate, Deoxynivalenol-3-Glucoside, in Beer and Some<br>Brewing Intermediates. Journal of Agricultural and Food Chemistry, 2009, 57, 3187-3194.            | 5.2 | 150       |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Concentrations of Some Metabolites Produced by Fungi of the Genus <i>Fusarium</i> and Selected Elements in Spring Spelt Grain. Cereal Chemistry, 2009, 86, 52-60.                                                                            | 2.2 | 10        |
| 128 | Investigations on the ability of <i>Fhb1</i> to protect wheat against nivalenol and deoxynivalenol.<br>Cereal Research Communications, 2008, 36, 429-435.                                                                                    | 1.6 | 18        |
| 129 | Fusarium toxins and total fungal biomass indicators in naturally contaminated wheat samples from north-eastern Poland in 2003. Food Additives and Contaminants, 2007, 24, 1292-1298.                                                         | 2.0 | 31        |
| 130 | Chromatographic methods for the simultaneous determination of mycotoxins and their conjugates in cereals. International Journal of Food Microbiology, 2007, 119, 33-37.                                                                      | 4.7 | 131       |
| 131 | Short review: Metabolism of theFusarium mycotoxins deoxynivalenol and zearalenone in plants.<br>Mycotoxin Research, 2007, 23, 68-72.                                                                                                         | 2.3 | 31        |
| 132 | Production of zearalenone-4-glucoside, a-zearalenol-4-glucoside and ß-zearalenol-4-glucoside.<br>Mycotoxin Research, 2007, 23, 180-184.                                                                                                      | 2.3 | 10        |
| 133 | Characterization of (13C24) T-2 toxin and its use as an internal standard for the quantification of T-2 toxin in cereals with HPLCâ $\in$ MS/MS. Analytical and Bioanalytical Chemistry, 2007, 389, 931-940.                                 | 3.7 | 33        |
| 134 | Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plantArabidopsis thaliana. Food Additives and Contaminants, 2006, 23, 1194-1200.        | 2.0 | 98        |
| 135 | Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Communications in Mass Spectrometry, 2006, 20, 2649-2659.                            | 1.5 | 615       |
| 136 | Suitability of a fully 13C isotope labeled internal standard for the determination of the mycotoxin<br>deoxynivalenol by LC-MS/MS without clean up. Analytical and Bioanalytical Chemistry, 2006, 384,<br>692-696.                           | 3.7 | 63        |
| 137 | Characterization and application of isotope-substituted (13C15)-deoxynivalenol (DON) as an internal standard for the determination of DON. Food Additives and Contaminants, 2006, 23, 1187-1193.                                             | 2.0 | 19        |
| 138 | Heterologous Expression of Arabidopsis UDP-Glucosyltransferases in Saccharomyces cerevisiae for<br>Production of Zearalenone-4-O-Glucoside. Applied and Environmental Microbiology, 2006, 72,<br>4404-4410.                                  | 3.1 | 74        |
| 139 | Rapid simultaneous determination of major type A- and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2005, 1062, 209-216.                 | 3.7 | 254       |
| 140 | Advances in the analysis of mycotoxins and its quality assurance. Food Additives and Contaminants, 2005, 22, 345-353.                                                                                                                        | 2.0 | 94        |
| 141 | The Ability to Detoxify the Mycotoxin Deoxynivalenol Colocalizes With a Major Quantitative Trait<br>Locus for Fusarium Head Blight Resistance in Wheat. Molecular Plant-Microbe Interactions, 2005, 18,<br>1318-1324.                        | 2.6 | 362       |
| 142 | Masked Mycotoxins:Â Determination of a Deoxynivalenol Glucoside in Artificially and Naturally<br>Contaminated Wheat by Liquid Chromatographyâ~'Tandem Mass Spectrometry. Journal of Agricultural<br>and Food Chemistry, 2005, 53, 3421-3425. | 5.2 | 346       |
| 143 | Incidence of trichothecenes and zearalenone in poultry feed mixtures from Slovakia. International Journal of Food Microbiology, 2005, 105, 19-25.                                                                                            | 4.7 | 53        |
| 144 | Processing and purity assessment of standards for the analysis of type-B trichothecene mycotoxins.<br>Analytical and Bioanalytical Chemistry, 2005, 382, 1848-1858.                                                                          | 3.7 | 22        |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | First results of GEN-AU: Cloning of Deoxynivalenol- and Zearalenone-inactivating<br>UDP-glucosyltransferase genes fromArabidopsis thaliana and expression in yeast for production of<br>mycotoxin-glucosides. Mycotoxin Research, 2005, 21, 108-111. | 2.3 | 2         |
| 146 | DON-glycosides: Characterisation of synthesis products and screening for their occurrence in DON-treated wheat samples. Mycotoxin Research, 2005, 21, 123-127.                                                                                       | 2.3 | 20        |
| 147 | Simultaneous determination of type A-& B-trichothecenes and zearalenone in cereals by High<br>Performance Liquid Chromatography — Tandem Mass Spectrometry. Mycotoxin Research, 2005, 21,<br>237-240.                                                | 2.3 | 3         |
| 148 | Performance of new clean-up column for the determination of ochratoxin A in cereals and foodstuffs by HPLC-FLD. Food Additives and Contaminants, 2004, 21, 1107-1114.                                                                                | 2.0 | 21        |
| 149 | Synthesis of deoxynivalenol-glucosides and their characterization using a QTrap LC-MS/MS.<br>Mycotoxin Research, 2003, 19, 47-50.                                                                                                                    | 2.3 | 18        |
| 150 | Detoxification of the Fusarium Mycotoxin Deoxynivalenol by a UDP-glucosyltransferase from<br>Arabidopsis thaliana. Journal of Biological Chemistry, 2003, 278, 47905-47914.                                                                          | 3.4 | 472       |