Kenta Shimizu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4227629/publications.pdf

Version: 2024-02-01

48 papers

3,160 citations

394421 19 h-index 206112 48 g-index

48 all docs

48 docs citations

48 times ranked

4412 citing authors

#	Article	IF	CITATIONS
1	Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature, 2022, 602, 300-306.	27.8	428
2	Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature, 2022, 603, 706-714.	27.8	756
3	Characterization of the Immune Resistance of Severe Acute Respiratory Syndrome Coronavirus 2 Mu Variant and the Robust Immunity Induced by Mu Infection. Journal of Infectious Diseases, 2022, 226, 1200-1203.	4.0	22
4	Serological methods for detection of infection with shrew-borne hantaviruses: Thottapalayam, Seewis, Altai, and Asama viruses. Archives of Virology, 2021, 166, 275-280.	2.1	4
5	Immunological Responses to Seoul Orthohantavirus in Experimentally and Naturally Infected Brown Rats (Rattus norvegicus). Viruses, 2021, 13, 665.	3.3	5
6	SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature, 2021, 599, 114-119.	27.8	1,041
7	Identification of Novel Rodent-Borne Orthohantaviruses in an Endemic Area of Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka. Viruses, 2021, 13, 1984.	3.3	5
8	The Polarity of an Amino Acid at Position 1891 of Severe Fever with Thrombocytopenia Syndrome Virus L Protein Is Critical for the Polymerase Activity. Viruses, 2021, 13, 33.	3.3	7
9	Subcellular localization of nucleocapsid protein of SFTSV and its assembly into the ribonucleoprotein complex with L protein and viral RNA. Scientific Reports, 2021, 11, 22977.	3.3	3
10	Exposure to Hantavirus is a Risk Factor Associated with Kidney Diseases in Sri Lanka: A Cross Sectional Study. Viruses, 2019, 11, 700.	3.3	15
11	Serological Evidence of Thailand Orthohantavirus or Antigenically Related Virus Infection Among Rodents in a Chronic Kidney Disease of Unknown Etiology Endemic Area, Girandurukotte, Sri Lanka. Vector-Borne and Zoonotic Diseases, 2019, 19, 859-866.	1.5	7
12	Reply to Comments by Yih et al. (Exposure to Hantavirus is a Risk Factor Associated with Kidney) Tj ETQq0 0 0 rg	BT ₃ ,3verlo	ock 10 Tf 50 3
13	Involvement of CD8+ T cells in the development of renal hemorrhage in a mouse model of hemorrhagic fever with renal syndrome. Archives of Virology, 2018, 163, 1577-1584.	2.1	5
14	Targeting of severe fever with thrombocytopenia syndrome virus structural proteins to the ERGIC (endoplasmic reticulum Golgi intermediate compartment) and Golgi complex . Biomedical Research, 2018, 39, 27-38.	0.9	11
15	Appearance of renal hemorrhage in adult mice after inoculation of patient-derived hantavirus. Virology Journal, 2017, 14, 13.	3.4	8
16	Epizootiological study of rodent-borne hepatitis E virus HEV-C1 in small mammals in Hanoi, Vietnam. Journal of Veterinary Medical Science, 2017, 79, 76-81.	0.9	9
17	The amino acid at position 624 in the glycoprotein of SFTSV (severe fever with) Tj ETQq1 1 0.784314 rg activity . Biomedical Research, 2017, 38, 89-97.	gBT /Overlo 0.9	ock 10 Tf 5 <mark>0</mark> 12
18	Evidence of infection with <i>Leptospira interrogans</i> and spotted fever group rickettsiae among rodents in an urban area of Osaka City, Japan. Journal of Veterinary Medical Science, 2017, 79, 1261-1263.	0.9	2

#	Article	IF	CITATIONS
19	Establishment of Subclones of the Severe Fever with Thrombocytopenia Syndrome Virus YG1 Strain Selected Using Low pH-Dependent Cell Fusion Activity. Japanese Journal of Infectious Diseases, 2017, 70, 388-393.	1.2	9
20	Evaluation of truncated LipL32 expressed by <i>Escherichia coli</i> and <i>Pichia pastoris</i> for serodiagnosis of <i>Leptospira</i> infection in rodents. Journal of Veterinary Medical Science, 2016, 78, 221-230.	0.9	4
21	Serological evidence of infection with rodent-borne hepatitis E virus HEV-C1 or antigenically related virus in humans. Journal of Veterinary Medical Science, 2016, 78, 1677-1681.	0.9	35
22	Quantitative Analysis of the Microtubule Interaction of Rabies Virus P3 Protein: Roles in Immune Evasion and Pathogenesis. Scientific Reports, 2016, 6, 33493.	3.3	24
23	Prevalence and Phylogenetic Analysis of <i>Orientia tsutsugamushi </i> in Small Mammals in Hanoi, Vietnam. Vector-Borne and Zoonotic Diseases, 2016, 16, 96-102.	1.5	8
24	Clinical and Epidemiological Characteristics of Scrub Typhus and Murine Typhus among Hospitalized Patients with Acute Undifferentiated Fever in Northern Vietnam. American Journal of Tropical Medicine and Hygiene, 2015, 92, 972-978.	1.4	50
25	Development of an immunochromatography strip test based on truncated nucleocapsid antigens of three representative hantaviruses. Virology Journal, 2014, 11, 87.	3.4	9
26	Neutrophil Depletion Suppresses Pulmonary Vascular Hyperpermeability and Occurrence of Pulmonary Edema Caused by Hantavirus Infection in C.B-17 SCID Mice. Journal of Virology, 2014, 88, 7178-7188.	3.4	32
27	Distinct genetic characteristics of Sri Lankan <i>Rattus</i> and <i>Bandicota</i> (Murinae, Rodentia) inferred from mitochondrial and nuclear markers. Genes and Genetic Systems, 2014, 89, 71-80.	0.7	12
28	Rapid, whole blood diagnostic test for detecting anti-hantavirus antibody in rats. Journal of Virological Methods, 2013, 193, 42-49.	2.1	25
29	Role of nucleocapsid protein of hantaviruses in intracellular traffic of viral glycoproteins. Virus Research, 2013, 178, 349-356.	2.2	7
30	Epidemiology of Hantavirus Infection in Thousand Islands Regency of Jakarta, Indonesia. Journal of Veterinary Medical Science, 2013, 75, 1003-1008.	0.9	8
31	Application of Truncated Nucleocapsid Protein (N) for Serotyping ELISA of Murinae-Associated Hantavirus Infection in Rats. Journal of Veterinary Medical Science, 2012, 74, 215-219.	0.9	10
32	Studies on Hantavirus Infection in Small Mammals Captured in Southern and Central Highland Area of Vietnam. Journal of Veterinary Medical Science, 2012, 74, 1155-1162.	0.9	19
33	Novel serological tools for detection of Thottapalayam virus, a Soricomorpha-borne hantavirus. Archives of Virology, 2012, 157, 2179-2187.	2.1	17
34	Development of a serotyping enzyme-linked immunosorbent assay system based on recombinant truncated hantavirus nucleocapsid proteins for New World hantavirus infection. Journal of Virological Methods, 2012, 185, 74-81.	2.1	13
35	The N-terminus of the Montano virus nucleocapsid protein possesses broadly cross-reactive conformation-dependent epitopes conserved in rodent-borne hantaviruses. Virology, 2012, 428, 48-57.	2.4	6
36	<i>bla</i> _{NDM-1} â€"positive <i>Klebsiella pneumoniae</i> from Environment, Vietnam. Emerging Infectious Diseases, 2012, 18, 1383-5.	4.3	72

#	Article	lF	CITATION
37	Amino acids at positions 273 and 394 in rabies virus nucleoprotein are important for both evasion of host RIG-I-mediated antiviral response and pathogenicity. Virus Research, 2011, 155, 168-174.	2.2	54
38	Amino Acid Substitution at Position 95 in Rabies Virus Matrix Protein Affects Viral Pathogenicity. Journal of Veterinary Medical Science, 2011, 73, 1363-1366.	0.9	12
39	The nucleoprotein and matrix protein segments of H5N1 influenza viruses are responsible for dominance in embryonated eggs. Journal of General Virology, 2011, 92, 1645-1649.	2.9	5
40	Different cross-reactivity of human and rodent sera to Tula virus and Puumala virus. Comparative Immunology, Microbiology and Infectious Diseases, 2010, 33, e67-e73.	1.6	9
41	Truncated Hantavirus Nucleocapsid Proteins for Serotyping Sin Nombre, Andes, and Laguna Negra Hantavirus Infections in Humans and Rodents. Journal of Clinical Microbiology, 2010, 48, 1635-1642.	3.9	21
42	Role of Interferon Antagonist Activity of Rabies Virus Phosphoprotein in Viral Pathogenicity. Journal of Virology, 2010, 84, 6699-6710.	3.4	91
43	Rabies Virus Nucleoprotein Functions To Evade Activation of the RIG-I-Mediated Antiviral Response. Journal of Virology, 2010, 84, 4002-4012.	3.4	96
44	Molecular Epidemiological and Serological Studies of Hantavirus Infection in Northern Vietnam. Journal of Veterinary Medical Science, 2009, 71, 1357-1363.	0.9	29
45	Amino acid at position 95 of the matrix protein is a cytopathic determinant of rabies virus. Virus Research, 2008, 137, 33-39.	2.2	25
46	Involvement of nucleoprotein, phosphoprotein, and matrix protein genes of rabies virus in virulence for adult mice. Virus Research, 2007, 123, 154-160.	2.2	68
47	Characterization of Recombinant Rabies Virus Carrying Double Glycoprotein Genes. Microbiology and Immunology, 2006, 50, 187-196.	1.4	19
48	Sensitivity of Rabies Virus to Type I Interferon Is Determined by the Phosphoprotein Gene. Microbiology and Immunology, 2006, 50, 975-978.	1.4	30