Claudia Wellbrock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4227594/publications.pdf

Version: 2024-02-01

60 papers

6,335 citations

34 h-index 149698 56 g-index

61 all docs

61 docs citations

61 times ranked

9361 citing authors

#	Article	IF	CITATIONS
1	Identification of a Dexamethasone Mediated Radioprotection Mechanism Reveals New Therapeutic Vulnerabilities in Glioblastoma. Cancers, 2021, 13, 361.	3.7	8
2	Osteoblasts contribute to a protective niche that supports melanoma cell proliferation and survival. Pigment Cell and Melanoma Research, 2020, 33, 74-85.	3.3	8
3	Cooperative behaviour and phenotype plasticity evolve during melanoma progression. Pigment Cell and Melanoma Research, 2020, 33, 695-708.	3.3	18
4	Phenotype plasticity as enabler ofÂmelanoma progression and therapyÂresistance. Nature Reviews Cancer, 2019, 19, 377-391.	28.4	262
5	A PAX3/BRN2 rheostat controls the dynamics of BRAF mediated MITF regulation in MITF <aup>high/AXL^{low} melanoma. Pigment Cell and Melanoma Research, 2019, 32, 280-291.</aup>	3.3	31
6	Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing. Oncogene, 2018, 37, 3166-3182.	5.9	82
7	Targeting invasive properties of melanoma cells. FEBS Journal, 2017, 284, 2148-2162.	4.7	36
8	An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition. Journal of Experimental Medicine, 2017, 214, 1691-1710.	8.5	71
9	Biomarker Accessible and Chemically Addressable Mechanistic Subtypes of BRAF Melanoma. Cancer Discovery, 2017, 7, 832-851.	9.4	49
10	PDL1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity. Cell Reports, 2017, 20, 1818-1829.	6.4	220
11	Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure. EMBO Molecular Medicine, 2017, 9, 1011-1029.	6.9	63
12	Overcoming resistance to BRAF inhibitors. Annals of Translational Medicine, 2017, 5, 387-387.	1.7	109
13	Report from the II Melanoma Translational Meeting of the Spanish Melanoma Group (GEM). Annals of Translational Medicine, 2017, 5, 390-390.	1.7	0
14	Glucose availability controls ATF4-mediated MITF suppression to drive melanoma cell growth. Oncotarget, 2017, 8, 32946-32959.	1.8	46
15	The Complexity of the ERK/MAP-Kinase Pathway and the Treatment of Melanoma Skin Cancer. Frontiers in Cell and Developmental Biology, 2016, 4, 33.	3.7	84
16	Melanoma and the Microenvironment â€" Age Matters. New England Journal of Medicine, 2016, 375, 696-698.	27.0	3
17	Molecular Pathways: Maintaining MAPK Inhibitor Sensitivity by Targeting Nonmutational Tolerance. Clinical Cancer Research, 2016, 22, 5966-5970.	7.0	41
18	Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy. Cancer Cell, 2016, 29, 270-284.	16.8	198

#	Article	lF	Citations
19	Targeting MITF in the tolerance-phase. Oncotarget, 2016, 7, 54094-54095.	1.8	4
20	Spatial intraâ€tumour heterogeneity in acquired resistance to targeted therapy complicates the use of <scp>PDX</scp> models for coâ€clinical cancer studies. EMBO Molecular Medicine, 2015, 7, 1087-1089.	6.9	8
21	MGMT Expression Predicts PARP-Mediated Resistance to Temozolomide. Molecular Cancer Therapeutics, 2015, 14, 1236-1246.	4.1	36
22	Microphthalmiaâ€associated transcription factor in melanoma development and <scp>MAP</scp> â€kinase pathway targeted therapy. Pigment Cell and Melanoma Research, 2015, 28, 390-406.	3.3	168
23	Differentiation of THP1 Cells into Macrophages for Transwell Co-culture Assay with Melanoma Cells. Bio-protocol, 2015, 5, .	0.4	49
24	Torin1 mediated TOR kinase inhibition reduces Wee1 levels and advances mitotic commitment in fission yeast and HeLa cells. Journal of Cell Science, 2014, 127, 1346-56.	2.0	37
25	The Immune Microenvironment Confers Resistance to MAPK Pathway Inhibitors through Macrophage-Derived TNFî±. Cancer Discovery, 2014, 4, 1214-1229.	9.4	174
26	<scp>TP</scp> 53 in the <scp>UV</scp> spotlight: a <i>bona fide</i> driver of melanoma. Pigment Cell and Melanoma Research, 2014, 27, 1010-1011.	3.3	2
27	MAPK pathway inhibition in melanoma: resistance three ways. Biochemical Society Transactions, 2014, 42, 727-732.	3.4	21
28	Heterogeneous Tumor Subpopulations Cooperate to Drive Invasion. Cell Reports, 2014, 8, 688-695.	6.4	172
29	Differential chemosensitivity to antifolate drugs between RAS and BRAF melanoma cells. Molecular Cancer, 2014, 13, 154.	19.2	2
30	Effect of SMURF2 Targeting on Susceptibility to MEK Inhibitors in Melanoma. Journal of the National Cancer Institute, 2013, 105, 33-46.	6.3	85
31	BRAF as therapeutic target in melanoma. Biochemical Pharmacology, 2010, 80, 561-567.	4.4	151
32	The melanocortin receptor agonist NDPâ€MSH impairs the allostimulatory function of dendritic cells. Immunology, 2010, 129, 610-619.	4.4	9
33	STAT5 contributes to antiapoptosis in melanoma. Melanoma Research, 2008, 18, 378-385.	1.2	34
34	Oncogenic BRAF Regulates Melanoma Proliferation through the Lineage Specific Factor MITF. PLoS ONE, 2008, 3, e2734.	2.5	226
35	Melanoma biology and new targeted therapy. Nature, 2007, 445, 851-857.	27.8	1,161
36	FGF-2 protects small cell lung cancer cells from apoptosis through a complex involving PKCÉ, B-Raf and S6K2. EMBO Journal, 2006, 25, 3078-3088.	7.8	173

#	Article	IF	CITATIONS
37	The Oncogenic Epidermal Growth Factor Receptor Variant Xiphophorus Melanoma Receptor Kinase Induces Motility in Melanocytes by Modulation of Focal Adhesions. Cancer Research, 2006, 66, 3145-3152.	0.9	32
38	Melanoma Development and Pigment Cell Transformation. , 2006, , 247-263.		0
39	STAT5 Contributes to Interferon Resistance of Melanoma Cells. Current Biology, 2005, 15, 1629-1639.	3.9	56
40	Activating mutations in the extracellular domain of the melanoma inducing receptor Xmrk are tumorigenicin vivo. International Journal of Cancer, 2005, 117, 723-729.	5.1	22
41	Elevated expression of MITF counteracts B-RAF–stimulated melanocyte and melanoma cell proliferation. Journal of Cell Biology, 2005, 170, 703-708.	5.2	162
42	The RAF proteins take centre stage. Nature Reviews Molecular Cell Biology, 2004, 5, 875-885.	37.0	1,066
43	The Brn-2 Transcription Factor Links Activated BRAF to Melanoma Proliferation. Molecular and Cellular Biology, 2004, 24, 2923-2931.	2.3	110
44	V599EB-RAF is an Oncogene in Melanocytes. Cancer Research, 2004, 64, 2338-2342.	0.9	319
45	MITF-M plays an essential role in transcriptional activation and signal transduction in Xiphophorus melanoma. Gene, 2003, 320, 117-126.	2.2	23
46	Identification of a Second egfr Gene in Xiphophorus Uncovers an Expansion of the Epidermal Growth Factor Receptor Family in Fish. Molecular Biology and Evolution, 2003, 21, 266-275.	8.9	40
47	Activation of p59Fyn Leads to Melanocyte Dedifferentiation by Influencing MKP-1-regulated Mitogen-activated Protein Kinase Signaling. Journal of Biological Chemistry, 2002, 277, 6443-6454.	3.4	87
48	Melanoma development and pigment cell transformation in xiphophorus. Microscopy Research and Technique, 2002, 58, 456-463.	2.2	27
49	Activation of STAT5 triggers proliferation and contributes to anti-apoptotic signalling mediated by the oncogenic Xmrk kinase. Oncogene, 2002, 21, 1668-1678.	5.9	50
50	Autocrine stimulation by osteopontin contributes to antiapoptotic signalling of melanocytes in dermal collagen. Cancer Research, 2002, 62, 4820-8.	0.9	66
51	Apoptosis Suppression by Raf-1 and MEK1 Requires MEK- and Phosphatidylinositol 3-Kinase-Dependent Signals. Molecular and Cellular Biology, 2001, 21, 2324-2336.	2.3	174
52	Ligand-independent Dimerization and Activation of the Oncogenic Xmrk Receptor by Two Mutations in the Extracellular Domain. Journal of Biological Chemistry, 2001, 276, 3333-3340.	3.4	49
53	Activation of phosphatidylinositol 3-kinase by a complex of p59fyn and the receptor tyrosine kinase Xmrk is involved in malignant transformation of pigment cells. FEBS Journal, 2000, 267, 3513-3522.	0.2	32
54	Multiple binding sites in the growth factor receptor Xmrk mediate binding to p59fyn, GRB2 and Shc. FEBS Journal, 1999, 260, 275-283.	0.2	34

#	Article	IF	CITATIONS
55	A Two-Step Selection Approach for the Identification of Ligand-Binding Determinants in Cytokine Receptors. Analytical Biochemistry, 1999, 268, 179-186.	2.4	0
56	PI3-Kinase Is Involved in Mitogenic Signaling by the Oncogenic Receptor Tyrosine Kinase Xiphophorus Melanoma Receptor Kinase in Fish Melanoma. Experimental Cell Research, 1999, 251, 340-349.	2.6	24
57	Activation of the Xmrk proto-oncogene of Xiphophorus by overexpression and mutational alterations. Oncogene, 1998, 16, 1681-1690.	5.9	34
58	Signalling by the oncogenic receptor tyrosine kinase Xmrk leads to activation of STAT5 in Xiphophorus melanoma. Oncogene, 1998, 16, 3047-3056.	5.9	37
59	Receptor tyrosine kinase Xmrk mediates proliferation in Xiphophorus melanoma cells., 1998, 76, 437-442.		28
60	Signal Transduction by the Oncogenic Receptor Tyrosine Kinase Xmrk in Melanoma Formation of Xiphophorus. Pigment Cell & Melanoma Research, 1997, 10, 34-40.	3.6	19