Nathaniel Kinsey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4227546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deterministic modeling of hybrid nonlinear effects in epsilon-near-zero thin films. Applied Physics Letters, 2022, 120, .	3.3	8
2	Optimizing epsilon-near-zero based plasmon assisted modulators through surface-to-volume ratio. Optics Express, 2022, 30, 19781.	3.4	6
3	Developing momentum in vanishing index photonics. Light: Science and Applications, 2022, 11, .	16.6	2
4	A Platform for Complementary Metalâ€Oxideâ€Semiconductor Compatible Plasmonics: High Plasmonic Quality Titanium Nitride Thin Films on Si (001) with a MgO Interlayer. Advanced Photonics Research, 2021, 2, 2000210.	3.6	8
5	Plasmonic colors in titanium nitride for robust and covert security features. Optics Express, 2021, 29, 19586.	3.4	5
6	Highâ€Quality Plasmonic Materials TiN and ZnO:Al by Atomic Layer Deposition. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100227.	2.4	4
7	Fast and Slow Nonlinearities in Epsilonâ€Nearâ€Zero Materials. Laser and Photonics Reviews, 2021, 15, 2000291.	8.7	44
8	Temporal dynamics of strongly coupled epsilon near-zero plasmonic systems. Applied Physics Letters, 2021, 119, .	3.3	3
9	Plasmonic titanium nitride via atomic layer deposition: A low-temperature route. Journal of Applied Physics, 2020, 127, .	2.5	12
10	Absorptive loss and band non-parabolicity as a physical origin of large nonlinearity in epsilon-near-zero materials. Optical Materials Express, 2020, 10, 1545.	3.0	40
11	Al:ZnO as a platform for near-zero-index photonics: enhancing the doping efficiency of atomic layer deposition. Optical Materials Express, 2020, 10, 3060.	3.0	8
12	Adiabatic frequency shifting in epsilon-near-zero materials: the role of group velocity. Optica, 2020, 7, 226.	9.3	76
13	Design and Optimization of an Acoustic Metamaterial Lens. , 2020, , .		0
14	Optical Nonlinearities in Transparent Conducting Oxides $\hat{a} \in \mathbb{C}$ The Role of Loss. , 2019, , .		1
15	Near-zero-index materials for photonics. Nature Reviews Materials, 2019, 4, 742-760.	48.7	234
16	Reliable modeling of ultrathin alternative plasmonic materials using spectroscopic ellipsometry [Invited]. Optical Materials Express, 2019, 9, 760.	3.0	19
17	Nonlinear epsilon-near-zero materials explained: opinion. Optical Materials Express, 2019, 9, 2793.	3.0	60
18	Nonlinearities and carrier dynamics in refractory plasmonic TiN thin films. Optical Materials Express, 2019, 9, 3911.	3.0	12

NATHANIEL KINSEY

#	Article	IF	CITATIONS
19	Roadmap on plasmonics. Journal of Optics (United Kingdom), 2018, 20, 043001.	2.2	240
20	Low-loss plasmon-assisted electro-optic modulator. Nature, 2018, 556, 483-486.	27.8	312
21	Interfacial Selfâ€Assembly of Colloidal Nanoparticles in Dualâ€Droplet Inkjet Printing. Advanced Materials Interfaces, 2018, 5, 1701561.	3.7	55
22	Emerging materials for tailorable nanophotonic devices. , 2018, , .		1
23	On-Chip Hybrid Photonic-Plasmonic Waveguides with Ultrathin Titanium Nitride Films. ACS Photonics, 2018, 5, 4423-4431.	6.6	36
24	Controlling the Plasmonic Properties of Ultrathin TiN Films at the Atomic Level. ACS Photonics, 2018, 5, 2816-2824.	6.6	74
25	Air-Droplet Interfaces: Interfacial Self-Assembly of Colloidal Nanoparticles in Dual-Droplet Inkjet Printing (Adv. Mater. Interfaces 10/2018). Advanced Materials Interfaces, 2018, 5, 1870047.	3.7	1
26	Epsilon Near-Zero Nonlinear Optical Measurements of Titanium Nitride Thin Films. , 2018, , .		1
27	Optical Properties of Plasmonic Ultrathin TiN Films. Advanced Optical Materials, 2017, 5, 1700065.	7.3	95
28	Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation. Nature Communications, 2017, 8, 15829.	12.8	91
29	Highâ€Performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications. Advanced Materials, 2017, 29, 1605177.	21.0	90
30	Dynamic nanophotonics [Invited]. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 95.	2.1	30
31	Angled physical vapor deposition techniques for non-conformal thin films and three-dimensional structures. MRS Communications, 2016, 6, 17-22.	1.8	12
32	Roadmap on optical metamaterials. Journal of Optics (United Kingdom), 2016, 18, 093005.	2.2	118
33	Enhanced Nonlinear Refractive Index in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>ε</mml:mi></mml:math> -Near-Zero Materials. Physical Review Letters, 2016, 116, 233901.	7.8	348
34	Plasmonic Interconnects Using Zirconium Nitride. , 2016, , .		5
35	Doppler-Shift Emulation Using Highly Time-Refracting TCO Layer. , 2016, , .		12
36	A practical platform for integrated optics with nitrides and oxides. , 2015, , .		0

NATHANIEL KINSEY

#	Article	IF	CITATIONS
37	Transparent conducting oxides as dynamic materials at telecom wavelengths. , 2015, , .		0
38	Gyroidal titanium nitride as nonmetallic metamaterial. Optical Materials Express, 2015, 5, 1316.	3.0	25
39	Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica, 2015, 2, 616.	9.3	280
40	Effective third-order nonlinearities in metallic refractory titanium nitride thin films. Optical Materials Express, 2015, 5, 2395.	3.0	50
41	Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited]. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 121.	2.1	111
42	Adiabatically Tapered Hyperbolic Metamaterials for Dispersion Control of High- k Waves. Nano Letters, 2015, 15, 498-505.	9.1	26
43	Practical Platform for Nanophotonics with Refractory Plasmonic Metal Nitrides and Transparent Conducting Oxides. , 2015, , .		1
44	Alternative Plasmonic Materials. Handbook of Surface Science, 2014, 4, 189-221.	0.3	15
45	CMOS Compatible Ultra-Compact Modulator. , 2014, , .		1
46	Experimental demonstration of titanium nitride plasmonic interconnects. Optics Express, 2014, 22, 12238.	3.4	76
47	Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Advanced Materials, 2014, 26, 7959-7965.	21.0	603
48	Plasmonic modulator using CMOS-compatible material platform. , 2014, , .		2
49	Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials. Optics Express, 2013, 21, 27326.	3.4	125