
Gian Paolo Accotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4227338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Known and Novel Arundo donax L. MicroRNAs and Their Targets Using High-Throughput Sequencing and Degradome Analysis. Life, 2022, 12, 651.	2.4	1
2	No Evidence for Seed Transmission of Tomato Yellow Leaf Curl Sardinia Virus in Tomato. Cells, 2021, 10, 1673.	4.1	8
3	The Induction of an Effective dsRNA-Mediated Resistance Against Tomato Spotted Wilt Virus by Exogenous Application of Double-Stranded RNA Largely Depends on the Selection of the Viral RNA Target Region. Frontiers in Plant Science, 2020, 11, 533338.	3.6	28
4	Arbuscular Mycorrhizal Symbiosis Primes Tolerance to Cucumber Mosaic Virus in Tomato. Viruses, 2020, 12, 675.	3.3	23
5	Impact of high or low levels of phosphorus and high sodium in soils on productivity and stress tolerance of Arundo donax plants. Plant Science, 2019, 289, 110260.	3.6	13
6	Arbuscular Mycorrhizal Symbiosis: Plant Friend or Foe in the Fight Against Viruses?. Frontiers in Microbiology, 2019, 10, 1238.	3.5	52
7	In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. BMC Genomics, 2019, 20, 169.	2.8	60
8	First Report of <i>Tomato leaf curl New Delhi virus</i> Associated with Severe Mosaic of Pumpkin in Italy. Plant Disease, 2018, 102, 459.	1.4	22
9	Virus-mediated export of chromosomal DNA in plants. Nature Communications, 2018, 9, 5308.	12.8	19
10	Viruses and Phytoparasitic Nematodes of Cicer arietinum L.: Biotechnological Approaches in Interaction Studies and for Sustainable Control. Frontiers in Plant Science, 2018, 9, 319.	3.6	18
11	Pyramiding <i>Ty</i> - <i>1</i> / <i>Ty</i> - <i>3</i> and <i>Ty</i> - <i>2</i> in tomato hybrids dramatically inhibits symptom expression and accumulation of tomato yellow leaf curl disease inducing viruses. Archives of Phytopathology and Plant Protection, 2017, 50, 213-227.	1.3	33
12	In silico prediction of miRNAs targeting ToLCV and their regulation in susceptible and resistant tomato plants. Australasian Plant Pathology, 2017, 46, 379-386.	1.0	9
13	Seed Transmission of Beet Curly Top Virus and Beet Curly Top Iran Virus in a Local Cultivar of Petunia in Iran. Viruses, 2017, 9, 299.	3.3	22
14	Deep Sequencing Data and Infectivity Assays Indicate that Chickpea Chlorotic Dwarf Virus is the Etiological Agent of the "Hard Fruit Syndrome―of Watermelon. Viruses, 2017, 9, 311.	3.3	18
15	First Report of <i>Chickpea chlorotic dwarf virus</i> in Watermelon (<i>Citrullus lanatus</i>) in Tunisia. Plant Disease, 2017, 101, 392.	1.4	13
16	Multi-spot, label-free detection of viral infection in complex media by a non-reflecting surface. Sensors and Actuators B: Chemical, 2016, 223, 957-962.	7.8	8
17	Multi-spot, Label-free Detection of Biomarkers in Complex Media by Reflectionless Surfaces. Procedia Engineering, 2014, 87, 58-61.	1.2	0
18	The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza, 2014, 24, 179-186.	2.8	61

#	Article	IF	CITATIONS
19	Transcriptomics of the Interaction between the Monopartite Phloem-Limited Geminivirus Tomato Yellow Leaf Curl Sardinia Virus and Solanum lycopersicum Highlights a Role for Plant Hormones, Autophagy and Plant Immune System Fine Tuning during Infection. PLoS ONE, 2014, 9, e89951.	2.5	77
20	Analysis of small RNAs derived from tomato yellow leaf curl Sardinia virus reveals a cross reaction between the major viral hotspot and the plant host genome. Virus Research, 2013, 178, 287-296.	2.2	39
21	From immunity to susceptibility: virus resistance induced in tomato by a silenced transgene is lost as <scp>TGS</scp> overcomes <scp>PTGS</scp> . Plant Journal, 2013, 75, 941-953.	5.7	17
22	The unconventional geminivirus <i>Beet curly top Iran virus</i> : satisfying Koch's postulates and determining vector and host range. Annals of Applied Biology, 2013, 162, 174-181.	2.5	18
23	Recombination profiles between Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus in laboratory and field conditions: evolutionary and taxonomic implications. Journal of General Virology, 2012, 93, 2712-2717.	2.9	34
24	RNA viruses and their silencing suppressors boost Abutilon mosaic virus, but not the Old World Tomato yellow leaf curl Sardinia virus. Virus Research, 2011, 161, 170-180.	2.2	9
25	Arbuscular Mycorrhizal Symbiosis Limits Foliar Transcriptional Responses to Viral Infection and Favors Long-Term Virus Accumulation. Molecular Plant-Microbe Interactions, 2011, 24, 1562-1572.	2.6	33
26	An RGG sequence in the replication-associated protein (Rep) of Tomato yellow leaf curl Sardinia virus is involved in transcriptional repression and severely impacts resistance in Rep-expressing plants. Journal of General Virology, 2011, 92, 204-209.	2.9	10
27	The complete nucleotide sequence of an isolate of Tomato yellow leaf curl Sardinia virus found in Sicily. Archives of Virology, 2010, 155, 1539-1542.	2.1	1
28	ORTom: a multi-species approach based on conserved co-expression to identify putative functional relationships among genes in tomato. Plant Molecular Biology, 2010, 73, 519-532.	3.9	4
29	Basil (<i>Ocimum basilicum</i>), a new host of <i>Pepino mosaic virus</i> . Plant Pathology, 2009, 58, 407-407.	2.4	16
30	Global and cellâ€ŧype gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytologist, 2009, 184, 975-987.	7.3	187
31	Two new natural begomovirus recombinants associated with the tomato yellow leaf curl disease co-exist with parental viruses in tomato epidemics in Italy. Virus Research, 2009, 143, 15-23.	2.2	56
32	Comparative Analysis of Expression Profiles in Shoots and Roots of Tomato Systemically Infected by Tomato spotted wilt virus Reveals Organ-Specific Transcriptional Responses. Molecular Plant-Microbe Interactions, 2009, 22, 1504-1513.	2.6	64
33	Transovarial Transmission of Begomoviruses in Bemisia tabaci. , 2009, , 339-345.		3
34	Potentiality of Methylation-sensitive Amplification Polymorphism (MSAP) in Identifying Genes Involved in Tomato Response to Tomato Yellow Leaf Curl Sardinia Virus. Plant Molecular Biology Reporter, 2008, 26, 156-173.	1.8	46
35	A single-tube PCR assay for detecting viruses and their recombinants that cause tomato yellow leaf curl disease in the Mediterranean basin. Journal of Virological Methods, 2008, 147, 93-98.	2.1	25
36	Real-time PCR for the quantitation of Tomato yellow leaf curl Sardinia virus in tomato plants and in Bemisia tabaci. Journal of Virological Methods, 2008, 147, 282-289.	2.1	101

#	Article	IF	CITATIONS
37	Founder effect, plant host, and recombination shape the emergent population of begomoviruses that cause the tomato yellow leaf curl disease in the Mediterranean basin. Virology, 2007, 359, 302-312.	2.4	127
38	Detection methods for TYLCV and TYLCSV. , 2007, , 241-249.		7
39	Spread of Tomato yellow leaf curl virus in Sicily: Partial Displacement of Another Geminivirus Originally Present. European Journal of Plant Pathology, 2006, 114, 293-299.	1.7	44
40	Field Evaluation of Tomato Hybrids Engineered with Tomato spotted wilt virus Sequences for Virus Resistance, Agronomic Performance, and Pollen-Mediated Transgene Flow. Phytopathology, 2005, 95, 800-807.	2.2	19
41	Tomato yellow leaf curl Sardinia virus can overcome transgene-mediated RNA silencing of two essential viral genes. Journal of General Virology, 2004, 85, 1745-1749.	2.9	53
42	TYLCSV DNA, but not infectivity, can be transovarially inherited by the progeny of the whitefly vector Bemisia tabaci (Gennadius). Virology, 2004, 323, 276-283.	2.4	63
43	Proteomics as a tool to improve investigation of substantial equivalence in genetically modified organisms: The case of a virusâ€resistant tomato. Proteomics, 2004, 4, 193-200.	2.2	90
44	Evidence for a Direct Link between Glutathione Biosynthesis and Stress Defense Gene Expression in Arabidopsis[W]. Plant Cell, 2004, 16, 2448-2462.	6.6	383
45	The partial sequence of RNA 1 of the ophiovirus Ranunculus white mottle virus indicates its relationship to rhabdoviruses and provides candidate primers for an ophiovirus-specific RT-PCR test. Archives of Virology, 2003, 148, 1037-1050.	2.1	29
46	First report of Tomato yellow leaf curl virus (TYLCV) in Italy. Plant Pathology, 2003, 52, 799-799.	2.4	32
47	Tomato Yellow Leaf Curl Sardinia Virus Rep-Derived Resistance to Homologous and Heterologous Geminiviruses Occurs by Different Mechanisms and Is Overcome if Virus-Mediated Transgene Silencing Is Activated. Journal of Virology, 2003, 77, 6785-6798.	3.4	97
48	Tomato infectious chlorosis virus causes leaf yellowing and reddening of tomato in Italy. Phytoparasitica, 2002, 30, 290-294.	1.2	37
49	Nucleotide sequence, genome organisation and phylogenetic analysis of Indian citrus ringspot virus. Archives of Virology, 2002, 147, 2215-2224.	2.1	28
50	Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnology, 2002, 2, 20.	3.3	134
51	Transgenically Expressed T-Rep of Tomato Yellow Leaf Curl Sardinia Virus Acts as a trans -Dominant-Negative Mutant, Inhibiting Viral Transcription and Replication. Journal of Virology, 2001, 75, 10573-10581.	3.4	44
52	Typing of Tomato Yellow Leaf Curl Viruses in Europe. European Journal of Plant Pathology, 2000, 106, 179-186.	1.7	105
53	Occurrence and Diagnosis of Tomato chlorosis virus in Portugal. European Journal of Plant Pathology, 2000, 106, 589-592.	1.7	61
54	Evaluation of resistance in Osteospermum ecklonis (DC.) Norl. plants transgenic for the N protein gene of tomato spotted wilt virus. Plant Cell Reports, 2000, 19, 983-988.	5.6	6

GIAN PAOLO ACCOTTO

#	Article	IF	CITATIONS
55	An Ophiovirus isolated from lettuce with big-vein symptoms. Archives of Virology, 2000, 145, 2629-2642.	2.1	86
56	Indian citrus ringspot virus: a proposed new species with some affinities to potex-, carla-, fovea- and allexiviruses. Archives of Virology, 2000, 145, 1895-1908.	2.1	29
57	Natural recombination between Tomato yellow leaf curl virus-Is and Tomato leaf curl virus. Journal of General Virology, 2000, 81, 2797-2801.	2.9	97
58	Using non-radioactive probes on plants: a few examples. , 1998, 13, 295-301.		14
59	Amino Acids in the Capsid Protein of Tomato Yellow Leaf Curl Virus That Are Crucial for Systemic Infection, Particle Formation, and Insect Transmission. Journal of Virology, 1998, 72, 10050-10057.	3.4	159
60	High Expression of Truncated Viral Rep Protein Confers Resistance to Tomato Yellow Leaf Curl Virus in Transgenic Tomato Plants. Molecular Plant-Microbe Interactions, 1997, 10, 571-579.	2.6	73
61	Partial characterization of a new virus from ranunculus with a divided RNA genome and circular supercoiled thread-like particles. Archives of Virology, 1997, 142, 2131-2146.	2.1	28
62	A polyclonal antiserum against a recombinant viral protein combines specificity with versatility. Journal of Virological Methods, 1996, 56, 209-219.	2.1	36
63	DNA-Binding Activity of the C2 Protein of Tomato Yellow Leaf Curl Geminivirus. Virology, 1996, 217, 607-612.	2.4	46
64	Resistance to Tomato Yellow Leaf Curl Geminivirus inNicotiana benthamianaPlants Transformed with a Truncated Viral C1 Gene. Virology, 1996, 224, 130-138.	2.4	132
65	Genetic transformation ofEustoma grandiflorum byAgrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 1996, 47, 67-72.	2.3	31
66	Genetic transformation of Eustoma grandiflorum Griseb. by microprojectile bombardment. Euphytica, 1995, 85, 125-130.	1.2	20
67	Resistance toTospoviruses inNicotiana benthamianaTransformed with the N Gene of Tomato Spotted Wilt Virus: Correlation Between Transgene Expression and Protection In Primary Transformants. Molecular Plant-Microbe Interactions, 1995, 8, 66.	2.6	57
68	High similarity among the tomato yellow leaf curl virus isolates from the West Mediterranean Basin: the nucleotide sequence of an infectious clone from Spain. Archives of Virology, 1994, 135, 165-170.	2.1	96
69	Advances in diagnosing tomato yellow leaf curl geminivirus infection. Molecular Biotechnology, 1994, 2, 219-226.	2.4	11
70	Digitaria Streak Geminivirus Replicative Forms Are Abundant in S-Phase Nuclei of Infected Cells. Virology, 1993, 195, 257-259.	2.4	42
71	Use of digoxigenin-labelled probes for detection and host-range studies of tomato yellow leaf curl geminivirus. Research in Virology, 1991, 142, 283-288.	0.7	49
72	Tomato yellow leaf curl virus from sardinia is a whitefly- transmitted monoparatite geminivirus. Nucleic Acids Research, 1991, 19, 6763-6769.	14.5	271

GIAN PAOLO ACCOTTO

#	Article	IF	CITATIONS
73	Processing of complementary sense RNAs ofDigitariastreak virus in its host and in transgenic tobacco. Nucleic Acids Research, 1990, 18, 7259-7265.	14.5	64
74	Molecular characterization of alfalfa cryptic virus 1. Journal of General Virology, 1990, 71, 433-437.	2.9	9
75	Ourmia melon virus, a virus from Iran with novel properties. Annals of Applied Biology, 1988, 112, 291-302.	2.5	34
76	RNA-dependent RNA polymerase activity in two morphologically different white clover cryptic viruses. Virology, 1988, 163, 413-419.	2.4	17
77	In vitro Translation of the Double-stranded RNA Genome from Beet Cryptic Virus 1. Journal of General Virology, 1987, 68, 1417-1422.	2.9	18
78	Cryptic Viruses in Hop Trefoil <i>(Medicago lupulina) </i> and Their Relationships to Other Cryptic Viruses in Legumes. Intervirology, 1987, 28, 144-156.	2.8	19
79	The nucleotide sequence of a geminivirus from Digitaria sanguinalis. Virology, 1987, 161, 160-169.	2.4	92
80	A Geminivirus, Serologically Related to Maize Streak Virus, from Digitaria sanguinalis from Vanuatu. Journal of General Virology, 1986, 67, 933-937.	2.9	43
81	The Coat Proteins and Nucleic Acids of Two Beet Cryptic Viruses. Journal of General Virology, 1986, 67, 363-366.	2.9	26
82	Three seedborne cryptic viruses containing double-stranded RNA isolated from white clover. Virology, 1985, 147, 29-40.	2.4	43