
Marc E G Hendrickx

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4226387/publications.pdf Version: 2024-02-01

MARC F C HENDRICKY

#	Article	IF	CITATIONS
1	Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review. Trends in Food Science and Technology, 2008, 19, 320-328.	15.1	522
2	Effects of high pressure on enzymes related to food quality. Trends in Food Science and Technology, 1998, 9, 197-203.	15.1	443
3	Pectins in Processed Fruits and Vegetables: Part Il—Structure–Function Relationships. Comprehensive Reviews in Food Science and Food Safety, 2009, 8, 86-104.	11.7	320
4	Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydrate Research, 2010, 345, 2583-2595.	2.3	273
5	The Emulsifying and Emulsion‣tabilizing Properties of Pectin: A Review. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 705-718.	11.7	253
6	Comparative study of the cell wall composition of broccoli, carrot, and tomato: Structural characterization of the extractable pectins and hemicelluloses. Carbohydrate Research, 2011, 346, 1105-1111.	2.3	242
7	Does high pressure processing influence nutritional aspects of plant based food systems?. Trends in Food Science and Technology, 2008, 19, 300-308.	15.1	236
8	Effects of high electric field pulses on enzymes. Trends in Food Science and Technology, 2001, 12, 94-102.	15.1	217
9	FT-IR spectroscopy, a reliable method for routine analysis of the degree of methylesterification of pectin in different fruit- and vegetable-based matrices. Food Chemistry, 2015, 176, 82-90.	8.2	203
10	Pectins in Processed Fruits and Vegetables: Part Ill—Texture Engineering. Comprehensive Reviews in Food Science and Food Safety, 2009, 8, 105-117.	11.7	202
11	Fine-tuning the properties of pectin–calcium gels by control of pectin fine structure, gel composition and environmental conditions. Trends in Food Science and Technology, 2010, 21, 219-228.	15.1	193
12	Effect of thermal blanching and of high pressure treatments on sweet green and red bell pepper fruits (Capsicum annuum L.). Food Chemistry, 2008, 107, 1436-1449.	8.2	177
13	Biotechnology under high pressure: applications and implications. Trends in Biotechnology, 2009, 27, 434-441.	9.3	173
14	Lipid digestion, micelle formation and carotenoid bioaccessibility kinetics: Influence of emulsion droplet size. Food Chemistry, 2017, 229, 653-662.	8.2	168
15	Effect of high pressure/high temperature processing on cell wall pectic substances in relation to firmness of carrot tissue. Food Chemistry, 2008, 107, 1225-1235.	8.2	165
16	Kinetics of Chlorophyll Degradation and Color Loss in Heated Broccoli Juice. Journal of Agricultural and Food Chemistry, 1999, 47, 2404-2409.	5.2	164
17	Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. Algal Research, 2018, 32, 150-161.	4.6	152
18	Influence of pectin properties and processing conditions on thermal pectin degradation. Food Chemistry, 2007, 105, 555-563.	8.2	146

#	Article	IF	CITATIONS
19	Changes in Sulfhydryl Content of Egg White Proteins Due to Heat and Pressure Treatment. Journal of Agricultural and Food Chemistry, 2005, 53, 5726-5733.	5.2	144
20	The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnology Advances, 2019, 37, 107419.	11.7	142
21	Nonâ€enzymatic Depolymerization of Carrot Pectin: Toward a Better Understanding of Carrot Texture During Thermal Processing. Journal of Food Science, 2006, 71, E1.	3.1	139
22	Combined thermal and high pressure colour degradation of tomato puree and strawberry juice. Journal of Food Engineering, 2007, 79, 553-560.	5.2	134
23	Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chemistry, 2010, 123, 269-274.	8.2	134
24	Pectin modifications and the role of pectin-degrading enzymes during postharvest softening of Jonagold apples. Food Chemistry, 2014, 158, 283-291.	8.2	130
25	Colour and carotenoid changes of pasteurised orange juice during storage. Food Chemistry, 2015, 171, 330-340.	8.2	129
26	Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Innovative Food Science and Emerging Technologies, 2011, 12, 466-477.	5.6	128
27	Carotenoid bioaccessibility in fruit- and vegetable-based food products as affected by product (micro)structural characteristics and the presence of lipids: A review. Trends in Food Science and Technology, 2014, 38, 125-135.	15.1	128
28	Pectin based food-ink formulations for 3-D printing of customizable porous food simulants. Innovative Food Science and Emerging Technologies, 2017, 42, 138-150.	5.6	128
29	Influence of Pectin Structural Properties on Interactions with Divalent Cations and Its Associated Functionalities. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 1576-1594.	11.7	127
30	Influence of intrinsic and extrinsic factors on rheology of pectin–calcium gels. Food Hydrocolloids, 2009, 23, 2069-2077.	10.7	125
31	Changes in β-carotene bioaccessibility and concentration during processing of carrot puree. Food Chemistry, 2012, 133, 60-67.	8.2	124
32	Kinetics for Isobaricâ^'Isothermal Degradation ofl-Ascorbic Acid. Journal of Agricultural and Food Chemistry, 1998, 46, 2001-2006.	5.2	123
33	High pressure homogenization followed by thermal processing of tomato pulp: Influence on microstructure and lycopene in vitro bioaccessibility. Food Research International, 2010, 43, 2193-2200.	6.2	123
34	Process–Structure–Function Relations of Pectin in Food. Critical Reviews in Food Science and Nutrition, 2016, 56, 1021-1042.	10.3	122
35	Effect of heat-treatment on the physico-chemical properties of egg white proteins: A kinetic study. Journal of Food Engineering, 2006, 75, 316-326.	5.2	120
36	Texture changes of processed fruits and vegetables: potential use of high-pressure processing. Trends in Food Science and Technology, 2008, 19, 309-319.	15.1	120

#	Article	IF	CITATIONS
37	Quality changes of pasteurised orange juice during storage: A kinetic study of specific parameters and their relation to colour instability. Food Chemistry, 2015, 187, 140-151.	8.2	120
38	PUFAs in Fish: Extraction, Fractionation, Importance in Health. Comprehensive Reviews in Food Science and Food Safety, 2009, 8, 59-74.	11.7	119
39	Effect of Thermal Processing on the Degradation, Isomerization, and Bioaccessibility of Lycopene in Tomato Pulp. Journal of Food Science, 2010, 75, C753-9.	3.1	119
40	Inactivation of Orange Pectinesterase by Combined High-Pressure and -Temperature Treatments:Â A Kinetic Study. Journal of Agricultural and Food Chemistry, 2000, 48, 1960-1970.	5.2	118
41	Kinetics of the Stability of Broccoli (Brassica oleraceaCv. Italica) Myrosinase and Isothiocyanates in Broccoli Juice during Pressure/Temperature Treatments. Journal of Agricultural and Food Chemistry, 2007, 55, 2163-2170.	5.2	116
42	Towards a better understanding of the relationship between the β-carotene in vitro bio-accessibility and pectin structural changes: A case study on carrots. Food Research International, 2009, 42, 1323-1330.	6.2	116
43	Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: Impact on overall quality attributes. Innovative Food Science and Emerging Technologies, 2011, 12, 235-243.	5.6	116
44	Emulsion stabilizing properties of citrus pectin and its interactions with conventional emulsifiers in oil-in-water emulsions. Food Hydrocolloids, 2018, 85, 144-157.	10.7	116
45	A modeling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics. Innovative Food Science and Emerging Technologies, 2000, 1, 5-19.	5.6	115
46	Foaming properties of egg white proteins affected by heat or high pressure treatment. Journal of Food Engineering, 2007, 78, 1410-1426.	5.2	115
47	Understanding texture changes of high pressure processed fresh carrots: A microstructural and biochemical approach. Journal of Food Engineering, 2007, 80, 873-884.	5.2	112
48	In vitro approaches to estimate the effect of food processing on carotenoid bioavailability need thorough understanding of process induced microstructural changes. Trends in Food Science and Technology, 2010, 21, 607-618.	15.1	111
49	Thermal and Pressureâ^Temperature Degradation of Chlorophyll in Broccoli (Brassica) Tj ETQq1 1 0.784314 rgBT 5289-5294.	/Overlock 5.2	10 Tf 50 26 110
50	Kinetics of combined pressure-temperature inactivation of avocado polyphenoloxidase. , 1998, 60, 292-300.		109
51	Particle Size Reduction Leading to Cell Wall Rupture Is More Important for the β-Carotene Bioaccessibility of Raw Compared to Thermally Processed Carrots. Journal of Agricultural and Food Chemistry, 2010, 58, 12769-12776.	5.2	109
52	Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Critical Reviews in Food Science and Nutrition, 2020, 60, 826-843.	10.3	109
53	Quality change during high pressure processing and thermal processing of cloudy apple juice. LWT - Food Science and Technology, 2017, 75, 85-92.	5.2	108
54	Pectins in Processed Fruit and Vegetables: Part l—Stability and Catalytic Activity of Pectinases. Comprehensive Reviews in Food Science and Food Safety, 2009, 8, 75-85.	11.7	106

#	Article	IF	CITATIONS
55	Effects of Combined Pressure and Temperature on Enzymes Related to Quality of Fruits and Vegetables: From Kinetic Information to Process Engineering Aspects. Critical Reviews in Food Science and Nutrition, 2003, 43, 527-586.	10.3	105
56	Activity, Electrophoretic Characteristics and Heat Inactivation of Polyphenoloxidases from Apples, Avocados, Grapes, Pears and Plums. LWT - Food Science and Technology, 1998, 31, 44-49.	5.2	103
57	Thermal versus high pressure processing of carrots: A comparative pilot-scale study on equivalent basis. Innovative Food Science and Emerging Technologies, 2012, 15, 1-13.	5.6	100
58	Influence of Pretreatment Conditions on the Texture and Cell Wall Components of Carrots During Thermal Processing. Journal of Food Science, 2005, 70, E85-E91.	3.1	98
59	High Pressure Inactivation of Polyphenoloxidases. Journal of Food Science, 1998, 63, 873-877.	3.1	96
60	Mild-Heat and High-Pressure Inactivation of Carrot Pectin Methylesterase: A Kinetic Study. Journal of Food Science, 2003, 68, 1377-1383.	3.1	96
61	High pressure, thermal and pulsed electricâ€fieldâ€induced structural changes in selected food allergens. Molecular Nutrition and Food Research, 2010, 54, 1701-1710.	3.3	96
62	Isolation and structural characterisation of papaya peel pectin. Food Research International, 2014, 55, 215-221.	6.2	96
63	Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses. Innovative Food Science and Emerging Technologies, 2019, 54, 64-77.	5.6	96
64	Quantifying the formation of carcinogens during food processing: acrylamide. Trends in Food Science and Technology, 2005, 16, 181-193.	15.1	95
65	Kinetics of Acrylamide Formation and Elimination during Heating of an Asparagineâ^'Sugar Model System. Journal of Agricultural and Food Chemistry, 2005, 53, 9999-10005.	5.2	94
66	Pectin Fraction Interconversions:  Insight into Understanding Texture Evolution of Thermally Processed Carrots. Journal of Agricultural and Food Chemistry, 2006, 54, 8471-8479.	5.2	93
67	Effect of Amino Acids on Acrylamide Formation and Elimination Kinetics. Biotechnology Progress, 2005, 21, 1525-1530.	2.6	92
68	Combined effect of high pressure and temperature on selected properties of egg white proteins. Innovative Food Science and Emerging Technologies, 2005, 6, 11-20.	5.6	92
69	Biochemical characterization and process stability of polyphenoloxidase extracted from Victoria grape (Vitis vinifera ssp. Sativa). Food Chemistry, 2006, 94, 253-261.	8.2	92
70	Inactivation of plant pectin methylesterase by thermal or high intensity pulsed electric field treatments. Innovative Food Science and Emerging Technologies, 2006, 7, 40-48.	5.6	91
71	Kinetic approach to study the relation between in vitro lipid digestion and carotenoid bioaccessibility in emulsions with different oil unsaturation degree. Journal of Functional Foods, 2018, 41, 135-147.	3.4	91
72	Temperature and pressure stability of l-ascorbic acid and/or [6s] 5-methyltetrahydrofolic acid: A kinetic study. European Food Research and Technology, 2006, 223, 71-77.	3.3	90

#	Article	IF	CITATIONS
73	Thermal Stability of <scp>l</scp> â€Ascorbic Acid and Ascorbic Acid Oxidase in Broccoli (<i>Brassica) Tj ETQq1 1 (</i>	0.784314	rgBT /Overlo
74	Effect of pH on Pressure and Thermal Inactivation of Avocado Polyphenol Oxidase:Â A Kinetic Study. Journal of Agricultural and Food Chemistry, 1998, 46, 2785-2792.	5.2	89
75	Effect of de-methylesterification on network development and nature of Ca2+-pectin gels: Towards understanding structure–function relations of pectin. Food Hydrocolloids, 2012, 26, 89-98.	10.7	89
76	Influence of pressure/temperature treatments on glucosinolate conversion in broccoli (Brassica) Tj ETQq0 0 0 rgB	T /Overloc 8.2	k 10 Tf 50 6
77	Lycopene degradation, isomerization and in vitro bioaccessibility in high pressure homogenized tomato puree containing oil: Effect of additional thermal and high pressure processing. Food	8.2	88

	Chemistry, 2012, 135, 1290-1297.		
78	Emulsion stability during gastrointestinal conditions effects lipid digestion kinetics. Food Chemistry, 2018, 246, 179-191.	8.2	87
79	Kinetic analysis and modelling of combined high-pressure–temperature inactivation of the yeast Zygosaccharomyces bailii. International Journal of Food Microbiology, 2000, 56, 199-210.	4.7	86
80	Partial Purification, Characterization, and Thermal and High-Pressure Inactivation of Pectin Methylesterase from Carrots (Daucus carrota L.). Journal of Agricultural and Food Chemistry, 2002, 50, 5437-5444.	5.2	86
81	Kinetics of heat denaturation of proteins from farmed Atlantic cod (Gadus morhua). Journal of Food Engineering, 2008, 85, 51-58.	5.2	86
82	Effect of high-pressure/high-temperature processing on chemical pectin conversions in relation to fruit and vegetable texture. Food Chemistry, 2009, 115, 207-213.	8.2	86
83	Effect of household and industrial processing on levels of five pesticide residues and two degradation products in spinach. Food Control, 2012, 25, 397-406.	5.5	86
84	Carrot β-Carotene Degradation and Isomerization Kinetics during Thermal Processing in the Presence of Oil. Journal of Agricultural and Food Chemistry, 2012, 60, 10312-10319.	5.2	86
85	Influence of pectin structure on texture of pectin–calcium gels. Innovative Food Science and Emerging Technologies, 2010, 11, 401-409.	5.6	85
86	The type and quantity of lipids present during digestion influence the in vitro bioaccessibility of lycopene from raw tomato pulp. Food Research International, 2012, 45, 250-255.	6.2	82
87	Carrot texture degradation kinetics and pectin changes during thermal versus high-pressure/high-temperature processing: A comparative study. Food Chemistry, 2010, 120, 1104-1112.	8.2	80
88	Effect of thermal and high pressure processes on structural and health-related properties of carrots (Daucus carota). Food Chemistry, 2011, 125, 903-912.	8.2	80
89	Modelling of Vitamin C Degradation during Thermal and High-Pressure Treatments of Red Fruit. Food and Bioprocess Technology, 2013, 6, 1015-1023.	4.7	80
90	The effect of pectin concentration and degree of methyl-esterification on the in vitro bioaccessibility of β-carotene-enriched emulsions. Food Research International, 2014, 57, 71-78.	6.2	79

#	Article	IF	CITATIONS
91	Inactivation kinetics of polygalacturonase in tomato juice. Innovative Food Science and Emerging Technologies, 2003, 4, 135-142.	5.6	78
92	Combined thermal and high pressure effect on carrot pectinmethylesterase stability and catalytic activity. Journal of Food Engineering, 2007, 78, 755-764.	5.2	78
93	Microstructure and bioaccessibility of different carotenoid species as affected by high pressure homogenisation: A case study on differently coloured tomatoes. Food Chemistry, 2013, 141, 4094-4100.	8.2	78
94	Carotenoid bioaccessibility and the relation to lipid digestion: A kinetic study. Food Chemistry, 2017, 232, 124-134.	8.2	78
95	Mechanistic insight into softening of Canadian wonder common beans (Phaseolus vulgaris) during cooking. Food Research International, 2018, 106, 522-531.	6.2	78
96	Comparative Study on Pressure and Temperature Stability of 5-Methyltetrahydrofolic Acid in Model Systems and in Food Products. Journal of Agricultural and Food Chemistry, 2004, 52, 485-492.	5.2	77
97	Temperature and pressure stability of mustard seed (Sinapis alba L.) myrosinase. Food Chemistry, 2006, 97, 263-271.	8.2	77
98	Impact of pretreatment and freezing conditions on the microstructure of frozen carrots: Quantification and relation to texture loss. European Food Research and Technology, 2006, 222, 543-553.	3.3	77
99	The effect of high pressure homogenization on pectin: Importance of pectin source and pH. Food Hydrocolloids, 2015, 43, 189-198.	10.7	77
100	Relation between Particle Size and Carotenoid Bioaccessibility in Carrot- and Tomato-Derived Suspensions. Journal of Agricultural and Food Chemistry, 2012, 60, 11995-12003.	5.2	75
101	Processing tomato pulp in the presence of lipids: The impact on lycopene bioaccessibility. Food Research International, 2013, 51, 32-38.	6.2	74
102	Pressure-Temperature Degradation of Green Color in Broccoli Juice. Journal of Food Science, 1999, 64, 504-508.	3.1	73
103	Minimizing texture loss of frozen strawberries: effect of infusion with pectinmethylesterase and calcium combined with different freezing conditions and effect of subsequent storage/thawing conditions. European Food Research and Technology, 2006, 223, 395-404.	3.3	73
104	Thermal and high pressure stability of tomato lipoxygenase and hydroperoxide lyase. Journal of Food Engineering, 2007, 79, 423-429.	5.2	73
105	Kinetics of colour changes in pasteurised strawberry juice during storage. Journal of Food Engineering, 2018, 216, 42-51.	5.2	73
106	Purification, characterization, thermal, and high-pressure inactivation of pectin methylesterase from bananas (cv Cavendish). Biotechnology and Bioengineering, 2002, 78, 683-691.	3.3	71
107	A method for characterising cook loss and water holding capacity in heat treated cod (Gadus) Tj ETQq1 1 0.784	814 rgBT /	Overlock 10 T
108	Immobilized Peroxidase: A Potential Bioindicator for Evaluation of Thermal Processes. Journal of Food Science, 1991, 56, 567-570.	3.1	70

#	Article	IF	CITATIONS
109	Effect of Temperature and/or Pressure on Tomato Pectinesterase Activity. Journal of Agricultural and Food Chemistry, 2000, 48, 551-558.	5.2	70
110	A Review on the Relationships between Processing, Food Structure, and Rheological Properties of Plantâ€Tissueâ€Based Food Suspensions. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 241-260.	11.7	70
111	Lycopene Degradation and Isomerization Kinetics during Thermal Processing of an Olive Oil/Tomato Emulsion. Journal of Agricultural and Food Chemistry, 2010, 58, 12784-12789.	5.2	69
112	Functional properties of citric acid extracted mango peel pectin as related to its chemical structure. Food Hydrocolloids, 2015, 44, 424-434.	10.7	69
113	Model Studies on the Stability of Folic Acid and 5-Methyltetrahydrofolic Acid Degradation during Thermal Treatment in Combination with High Hydrostatic Pressure. Journal of Agricultural and Food Chemistry, 2003, 51, 3352-3357.	5.2	68
114	Stiffness of Ca2+-pectin gels: combined effects of degree and pattern of methylesterification for various Ca2+ concentrations. Carbohydrate Research, 2012, 348, 69-76.	2.3	68
115	Headspace fingerprinting as an untargeted approach to compare novel and traditional processing technologies: A case-study on orange juice pasteurisation. Food Chemistry, 2012, 134, 2303-2312.	8.2	68
116	Thermal and high pressure high temperature processes result in distinctly different pectin non-enzymatic conversions. Food Hydrocolloids, 2014, 39, 251-263.	10.7	68
117	Influence of pH, Benzoic Acid, EDTA, and Glutathione on the Pressure and/or Temperature Inactivation Kinetics of Mushroom Polyphenoloxidase. Biotechnology Progress, 1997, 13, 25-32.	2.6	67
118	Intrinsic time temperature integrators for heat treatment of milk. Trends in Food Science and Technology, 2002, 13, 293-311.	15.1	67
119	Comparative Study of the Inactivation Kinetics of Pectinmethylesterase in Tomato Juice and Purified Form. Biotechnology Progress, 2002, 18, 739-744.	2.6	67
120	The impact of extraction with a chelating agent under acidic conditions on the cell wall polymers of mango peel. Food Chemistry, 2014, 161, 199-207.	8.2	67
121	CHARACTERIZATION AND INACTIVATION BY THERMAL AND PRESSURE PROCESSING OF STRAWBERRY (FRAGARIA ANANASSA) POLYPHENOL OXIDASE: A KINETIC STUDY. Journal of Food Biochemistry, 2006, 30, 56-76.	2.9	66
122	Headspace components that discriminate between thermal and high pressure high temperature treated green vegetables: Identification and linkage to possible process-induced chemical changes. Food Chemistry, 2013, 141, 1603-1613.	8.2	66
123	Comparing the impact of high pressure high temperature and thermal sterilization on the volatile fingerprint of onion, potato, pumpkin and red beet. Food Research International, 2014, 56, 218-225.	6.2	66
124	Hydration properties and texture fingerprints of easy―and hardâ€ŧoâ€ɛook bean varieties. Food Science and Nutrition, 2015, 3, 39-47.	3.4	66
125	Anthocyanin degradation kinetics during thermal and high pressure treatments of raspberries. Journal of Food Engineering, 2011, 105, 513-521.	5.2	65
126	Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable-based systems. Food Chemistry, 2013, 141, 2036-2043.	8.2	65

#	Article	IF	CITATIONS
127	Effect of preheating and calcium pre-treatment on pectin structure and thermal texture degradation: a case study on carrots. Journal of Food Engineering, 2005, 67, 419-425.	5.2	64
128	Quantitative evaluation of thermal processes using time-temperature integrators. Trends in Food Science and Technology, 1996, 7, 16-26.	15.1	63
129	Modeling Conductive Heat Transfer and Process Uniformity during Batch High-Pressure Processing of Foods. Biotechnology Progress, 2000, 16, 92-101.	2.6	63
130	Thermal and high-pressure stability of purified polygalacturonase and pectinmethylesterase from four different tomato processing varieties. Food Research International, 2006, 39, 440-448.	6.2	63
131	Effect of Combined Pressure and Temperature on Soybean Lipoxygenase. 1. Influence of Extrinsic and Intrinsic Factors on Isobaricâ~Isothermal Inactivation Kinetics. Journal of Agricultural and Food Chemistry, 1998, 46, 4074-4080.	5.2	62
132	Thermal and High-Pressure Inactivation of Tomato Polygalacturonase: A Kinetic Study. Journal of Food Science, 2002, 67, 1610-1615.	3.1	61
133	Effects of pressure/temperature treatments on stability and activity of endogenous broccoli (Brassica) Tj ETQq1 1 178-186.	l 0.78431 5.2	4 rgBT /Over 61
134	β-Carotene Isomerization Kinetics during Thermal Treatments of Carrot Puree. Journal of Agricultural and Food Chemistry, 2010, 58, 6816-6824.	5.2	61
135	Effect of high pressure high temperature processing on the volatile fraction of differently coloured carrots. Food Chemistry, 2014, 153, 340-352.	8.2	61
136	Mechanistic insight into common bean pectic polysaccharide changes during storage, soaking and thermal treatment in relation to the hard-to-cook defect. Food Research International, 2016, 81, 39-49.	6.2	61
137	Expression analysis of candidate cell wall-related genes associated with changes in pectin biochemistry during postharvest apple softening. Postharvest Biology and Technology, 2016, 112, 176-185.	6.0	61
138	Effect of Combined Pressure and Temperature on Soybean Lipoxygenase. 2. Modeling Inactivation Kinetics under Static and Dynamic Conditions. Journal of Agricultural and Food Chemistry, 1998, 46, 4081-4086.	5.2	60
139	Temperature Sensitivity and Pressure Resistance of Mushroom Polyphenoloxidase. Journal of Food Science, 1997, 62, 261-266.	3.1	59
140	Lipoxygenase Inactivation in Green Beans (PhaseolusvulgarisL.) Due to High Pressure Treatment at Subzero and Elevated Temperatures. Journal of Agricultural and Food Chemistry, 2000, 48, 1850-1859.	5.2	59
141	Heat-Induced Changes in the Susceptibility of Egg White Proteins to Enzymatic Hydrolysis: a Kinetic Study. Journal of Agricultural and Food Chemistry, 2003, 51, 3819-3823.	5.2	59
142	Measurement of the Thermal Conductivity of Foods at High Pressure. Journal of Food Science, 1999, 64, 709-713.	3.1	58
143	Thermal pretreatments of carrot pieces using different heating techniques: Effect on quality related aspects. Innovative Food Science and Emerging Technologies, 2009, 10, 522-529.	5.6	58
144	Molecular and rheological characterization of different cell wall fractions of Porphyridium cruentum. Carbohydrate Polymers, 2018, 195, 542-550.	10.2	58

#	Article	IF	CITATIONS
145	Modelling the influence of temperature and carbon dioxide upon the growth of Pseudomonas fluorescens. Food Microbiology, 1993, 10, 159-173.	4.2	57
146	Effect of preheating on thermal degradation kinetics of carrot texture. Innovative Food Science and Emerging Technologies, 2004, 5, 37-44.	5.6	57
147	Thermal and high-pressure inactivation kinetics of carrot pectinmethylesterase: from model system to real foods. Innovative Food Science and Emerging Technologies, 2004, 5, 429-436.	5.6	57
148	The Effect of High Pressureâ^'High Temperature Processing Conditions on Acrylamide Formation and Other Maillard Reaction Compounds. Journal of Agricultural and Food Chemistry, 2010, 58, 11740-11748.	5.2	57
149	Lipolysis products formation during in vitro gastric digestion is affected by the emulsion interfacial composition. Food Hydrocolloids, 2021, 110, 106163.	10.7	57
150	Relation Between Particle Properties and Rheological Characteristics of Carrot-derived Suspensions. Food and Bioprocess Technology, 2013, 6, 1127-1143.	4.7	56
151	Process-induced cell wall permeability modulates the <i>in vitro</i> starch digestion kinetics of common bean cotyledon cells. Food and Function, 2018, 9, 6544-6554.	4.6	56
152	Shelf-life extension of cooked ham model product by high hydrostatic pressure and natural preservatives. Innovative Food Science and Emerging Technologies, 2011, 12, 407-415.	5.6	55
153	Effect of debranching on the rheological properties of Ca2+–pectin gels. Food Hydrocolloids, 2012, 26, 44-53.	10.7	55
154	Inactivation kinetics of alkaline phosphatase and lactoperoxidase, and denaturation kinetics of β-lactoglobulin in raw milk under isothermal and dynamic temperature conditions. Journal of Dairy Research, 2001, 68, 95-107.	1.4	54
155	Analysis of the Thermally Induced Structural Changes of Bovine Lactoferrin. Journal of Agricultural and Food Chemistry, 2013, 61, 2234-2243.	5.2	54
156	Purified tomato polygalacturonase activity during thermal and high-pressure treatment. Biotechnology and Bioengineering, 2004, 86, 63-71.	3.3	53
157	Impact of pH on the Kinetics of Acrylamide Formation/Elimination Reactions in Model Systems. Journal of Agricultural and Food Chemistry, 2006, 54, 7847-7855.	5.2	53
158	Inactivation kinetics of pectin methyl esterase under combined thermal–high pressure treatment in an orange juice–milk beverage. Journal of Food Engineering, 2008, 86, 133-139.	5.2	52
159	Pectin conversions under high pressure: Implications for the structure-related quality characteristics of plant-based foods. Trends in Food Science and Technology, 2012, 24, 103-118.	15.1	52
160	The Effects of Process-Induced Pectin Changes on the Viscosity of Carrot and Tomato Sera. Food and Bioprocess Technology, 2013, 6, 2870-2883.	4.7	52
161	Effect of storage conditions on pectic polysaccharides in common beans (Phaseolus vulgaris) in relation to the hard-to-cook defect. Food Research International, 2015, 76, 105-113.	6.2	52
162	Study of chemical changes in pasteurised orange juice during shelf-life: A fingerprinting-kinetics evaluation of the volatile fraction. Food Research International, 2015, 75, 295-304.	6.2	52

#	Article	IF	CITATIONS
163	Minimizing quality changes of cloudy apple juice: The use of kiwifruit puree and high pressure homogenization. Food Chemistry, 2018, 249, 202-212.	8.2	52
164	Purification, characterization, thermal and high-pressure inactivation of a pectin methylesterase from white grapefruit (Citrus paradisi). Innovative Food Science and Emerging Technologies, 2005, 6, 363-371.	5.6	51
165	From fingerprinting to kinetics in evaluating food quality changes. Trends in Biotechnology, 2014, 32, 125-131.	9.3	51
166	Optimal Sterilization Temperatures for Conduction Heating Foods Considering Finite Surface Heat Transfer Coefficients. Journal of Food Science, 1992, 57, 743-748.	3.1	50
167	Soybean Lipoxygenase Inactivation by Pressure at Subzero and Elevated Temperatures. Journal of Agricultural and Food Chemistry, 1999, 47, 2468-2474.	5.2	50
168	Combined Pressure—temperature Inactivation of Alkaline Phosphatase in Bovine Milk: A Kinetic Study. Journal of Food Science, 2000, 65, 155-160.	3.1	50
169	Quantifying structural characteristics of partially de-esterified pectins. Food Hydrocolloids, 2011, 25, 434-443.	10.7	50
170	Highâ€pressure treatment reduces the immunoreactivity of the major allergens in apple and celeriac. Molecular Nutrition and Food Research, 2011, 55, 1087-1095.	3.3	50
171	(Bio)chemical reactions during high pressure/high temperature processing affect safety and quality of plant-based foods. Trends in Food Science and Technology, 2012, 23, 28-38.	15.1	50
172	Extraction and characterization of pectic polysaccharides from easy- and hard-to-cook common beans (Phaseolus vulgaris). Food Research International, 2014, 64, 314-322.	6.2	50
173	Pectin influences the kinetics of in vitro lipid digestion in oil-in-water emulsions. Food Chemistry, 2018, 262, 150-161.	8.2	50
174	Kinetic Study of Antibrowning Agents and Pressure Inactivation of Avocado Polyphenoloxidase. Journal of Food Science, 1999, 64, 823-827.	3.1	49
175	Strawberry Pectin Methylesterase (PME): Purification, Characterization, Thermal and High-Pressure Inactivation. Biotechnology Progress, 2002, 18, 1447-1450.	2.6	49
176	Effect of Mild-Heat and High-Pressure Processing on Banana Pectin Methylesterase:Â A Kinetic Study. Journal of Agricultural and Food Chemistry, 2003, 51, 7974-7979.	5.2	49
177	Application of thermal inactivation of enzymes during vitamin C analysis to study the influence of acidification, crushing and blanching on vitamin C stability in Broccoli (Brassica oleracea L var.) Tj ETQq1 1 0.78	431 &1 2gBT	`/O 40 rlock 10
178	Role of structural barriers for carotenoid bioaccessibility upon high pressure homogenization. Food Chemistry, 2016, 199, 423-432.	8.2	49
179	New semi-empirical approach to handle time-variable boundary conditions during sterilisation of non-conductive heating foods. Journal of Food Engineering, 1995, 24, 249-268.	5.2	48
180	Thermal and Combined Pressureâ^'Temperature Inactivation of Orange Pectinesterase:Â Influence of pH and Additives. Journal of Agricultural and Food Chemistry, 1999, 47, 2950-2958.	5.2	48

#	Article	IF	CITATIONS
181	Aspergillus aculeatus pectin methylesterase: study of the inactivation by temperature and pressure and the inhibition by pectin methylesterase inhibitor. Enzyme and Microbial Technology, 2005, 36, 385-390.	3.2	48
182	The effect of pectin on inÂvitro β-carotene bioaccessibility and lipid digestion in low fat emulsions. Food Hydrocolloids, 2015, 49, 73-81.	10.7	48
183	Kinetics for Isobaric-Isothermal Inactivation of Bacillus subtilis α-Amylase. Biotechnology Progress, 1997, 13, 532-538.	2.6	47
184	Mode of De-esterification of Alkaline and Acidic Pectin Methyl Esterases at Different pH Conditions. Journal of Agricultural and Food Chemistry, 2006, 54, 7825-7831.	5.2	47
185	Carrot pectin methylesterase and its inhibitor from kiwi fruit: Study of activity, stability and inhibition. Innovative Food Science and Emerging Technologies, 2009, 10, 601-609.	5.6	47
186	Pectin characterisation in vegetable waste streams: A starting point for waste valorisation in the food industry. LWT - Food Science and Technology, 2015, 61, 275-282.	5.2	47
187	Evaluation of cation-facilitated pectin-gel properties: Cryo-SEM visualisation and rheological properties. Food Hydrocolloids, 2016, 61, 172-182.	10.7	47
188	Comparative study on lipid digestion and carotenoid bioaccessibility of emulsions, nanoemulsions and vegetable-based in situ emulsions. Food Hydrocolloids, 2019, 87, 119-128.	10.7	47
189	Thermostability of Soluble and Immobilized Horseradish Peroxidase. Journal of Food Science, 1991, 56, 574-578.	3.1	46
190	Modeling Heat Transfer during High-Pressure Freezing and Thawing. Biotechnology Progress, 1997, 13, 416-423.	2.6	46
191	Modeling Conductive Heat Transfer during High-Pressure Thawing Processes: Determination of Latent Heat as a Function of Pressure. Biotechnology Progress, 2000, 16, 447-455.	2.6	46

#	Article	IF	CITATIONS
199	Microalgal biomass as a (multi)functional ingredient in food products: Rheological properties of microalgal suspensions as affected by mechanical and thermal processing. Algal Research, 2017, 25, 452-463.	4.6	45
200	Pectin nanostructure influences pectin-cation interactions and inÂvitro -bioaccessibility of Ca 2+ , Zn 2+ , Fe 2+ and Mg 2+ -ions in model systems. Food Hydrocolloids, 2017, 62, 299-310.	10.7	45
201	Changes in purified tomato pectinmethylesterase activity during thermal and high pressure treatment. Journal of the Science of Food and Agriculture, 2004, 84, 1839-1847.	3.5	44
202	Effect of Pectinmethylesterase Infusion Methods and Processing Techniques on Strawberry Firmness. Journal of Food Science, 2005, 70, s383.	3.1	44
203	Critical evaluation of commonly used objective functions to optimize overall quality and nutrient retention of heat-preserved foods. Journal of Food Engineering, 1992, 17, 241-258.	5.2	43
204	Thermal and High-Pressure Inactivation Kinetics of Polyphenol Oxidase in Victoria Grape Must. Journal of Agricultural and Food Chemistry, 2005, 53, 2988-2994.	5.2	43
205	Effect of mechanical impact-bruising on polygalacturonase and pectinmethylesterase activity and pectic cell wall components in tomato fruit. Postharvest Biology and Technology, 2008, 47, 98-106.	6.0	43
206	Anti-homogalacturonan antibodies: A way to explore the effect of processing on pectin in fruits and vegetables?. Food Research International, 2011, 44, 225-234.	6.2	43
207	Towards a better understanding of the pectin structure–function relationship in broccoli during processing: Part l—macroscopic and molecular analyses. Food Research International, 2011, 44, 1604-1612.	6.2	42
208	Potential and limitations of methods for temperature uniformity mapping in high pressure thermal processing. Trends in Food Science and Technology, 2012, 23, 97-110.	15.1	42
209	A multivariate approach into physicochemical, biochemical and aromatic quality changes of purée based on Hayward kiwifruit during the final phase of ripening. Postharvest Biology and Technology, 2016, 117, 206-216.	6.0	42
210	Cotyledon pectin molecular interconversions explain pectin solubilization during cooking of common beans (Phaseolus vulgaris). Food Research International, 2019, 116, 462-470.	6.2	42
211	Mechanical and Thermal Pretreatments of Crushed Tomatoes: Effects on Consistency andâ€, <i>In Vitro</i> â€,Accessibility of Lycopene. Journal of Food Science, 2009, 74, E386-95.	3.1	41
212	Fe 2+ adsorption on citrus pectin is influenced by the degree and pattern of methylesterification. Food Hydrocolloids, 2017, 73, 101-109.	10.7	41
213	Covalent enzyme immobilization on paramagnetic polyacrolein beads. Biosensors and Bioelectronics, 1996, 11, 443-448.	10.1	40
214	Single, Combined, or Sequential Action of Pressure and Temperature on Lipoxygenase in Green Beans (Phaseolus vulgaris L.): A Kinetic Inactivation Study. Biotechnology Progress, 1999, 15, 273-277.	2.6	40
215	Influence of processing on the pectin structure–function relationship in broccoli purée. Innovative Food Science and Emerging Technologies, 2012, 15, 57-65.	5.6	40
216	Rheology of Concentrated Tomato-Derived Suspensions: Effects of Particle Characteristics. Food and Bioprocess Technology, 2014, 7, 248-264.	4.7	40

#	Article	IF	CITATIONS
217	Carotene Degradation and Isomerization during Thermal Processing: A Review on the Kinetic Aspects. Critical Reviews in Food Science and Nutrition, 2016, 56, 1844-1855.	10.3	40
218	Physico-chemical and viscoelastic properties of high pressure homogenized lemon peel fiber fraction suspensions obtained after sequential pectin extraction. Food Hydrocolloids, 2017, 72, 358-371.	10.7	40
219	Evaluating microalgal cell disruption upon ultra high pressure homogenization. Algal Research, 2019, 42, 101616.	4.6	40
220	Understanding the Relations Among the Storage, Soaking, and Cooking Behavior of Pulses: A Scientific Basis for Innovations in Sustainable Foods for the Future. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1135-1165.	11.7	40
221	Effect of temperature and/or pressure on lactoperoxidase activity in bovine milk and acid whey. Journal of Dairy Research, 2001, 68, 625-637.	1.4	39
222	THERMAL AND HIGH-PRESSURE STABILITY OF PURIFIED PECTIN METHYLESTERASE FROM PLUMS (PRUNUS) TJ ET	[Qq000	gBJ_/Overlocl
223	Rheological Properties of Tomato-based Products after Thermal and High-pressure Treatment. Journal of Food Science, 2006, 71, S243-S248.	3.1	39
224	The Kinetics of β-Elimination of Cystine and the Formation of Lanthionine in Gliadin. Journal of Agricultural and Food Chemistry, 2010, 58, 10761-10767.	5.2	39
225	Review: are intrinsic TTIs for thermally processed milk applicable for high-pressure processing assessment?. Innovative Food Science and Emerging Technologies, 2003, 4, 1-14.	5.6	38
226	High-pressure treatments induce folate polyglutamate profile changes in intact broccoli (Brassica) Tj ETQq0 0 0	rgBT /Ove 8.2	rlock 10 Tf 50
227	Kinetics of Acrylamide Formation/Elimination Reactions as Affected by Water Activity. Biotechnology Progress, 2008, 23, 722-728.	2.6	38
228	Interactions between citrus pectin and Zn2+ or Ca2+ and associated inÂvitro Zn2+ bioaccessibility as affected by degree of methylesterification and blockiness. Food Hydrocolloids, 2018, 79, 319-330.	10.7	38
229	Texture and interlinked post-process microstructures determine the in vitro starch digestibility of Bambara groundnuts with distinct hard-to-cook levels. Food Research International, 2019, 120, 1-11.	6.2	38
230	Effect of temperature and pressure on the activity of purified tomato polygalacturonase in the presence of pectins with different patterns of methyl esterification. Innovative Food Science and Emerging Technologies, 2005, 6, 293-303.	5.6	37
231	Inactivation of pepper (Capsicum annuum) pectin methylesterase by combined high-pressure and temperature treatments. Journal of Food Engineering, 2006, 75, 50-58.	5.2	37
232	Effect of Moisture Content during Dry-Heating on Selected Physicochemical and Functional Properties of Dried Egg White. Journal of Agricultural and Food Chemistry, 2007, 55, 127-135.	5.2	37
233	Kinetic study on the combined effect of high pressure and temperature on the physico-chemical properties of egg white proteins. Journal of Food Engineering, 2007, 78, 206-216.	5.2	37
234	Impact evaluation of high pressure treatment on foods: considerations on the development of pressure–temperature–time integrators (pTTIs). Trends in Food Science and Technology, 2008, 19, 337-348.	15.1	37

#	Article	IF	CITATIONS
235	Integrated science-based approach to study quality changes of shelf-stable food products during storage: A proof of concept on orange and mango juices. Trends in Food Science and Technology, 2018, 73, 76-86.	15.1	37
236	Thermal treatment of common beans (<i>Phaseolus vulgaris</i> L.): Factors determining cooking time and its consequences for sensory and nutritional quality. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3690-3718.	11.7	37
237	Structure/processing relation of vacuum infused strawberry tissue frozen under different conditions. European Food Research and Technology, 2008, 226, 437-448.	3.3	36
238	Enzyme infusion prior to thermal/high pressure processing of strawberries: Mechanistic insight into firmness evolution. Innovative Food Science and Emerging Technologies, 2010, 11, 23-31.	5.6	36
239	Effect of process-induced common bean hardness on structural properties of in vivo generated boluses and consequences for in vitro starch digestion kinetics. British Journal of Nutrition, 2019, 122, 388-399.	2.3	36
240	Development of an Enzymic Time Temperature Integrator for Sterilization Processes Based on Bacillus licheniformis α-amylase at Reduced Water Content. Journal of Food Science, 2002, 67, 285-291.	3.1	35
241	Behavior of mustard seed (Sinapis alba L.) myrosinase during temperature/pressure treatments: a case study on enzyme activity and stability. European Food Research and Technology, 2008, 226, 545-553.	3.3	35
242	The kinetics of acrylamide formation/elimination in asparagine–glucose systems at different initial reactant concentrations and ratios. Food Chemistry, 2008, 111, 719-729.	8.2	35
243	Enzyme infusion and thermal processing of strawberries: Pectin conversions related to firmness evolution. Food Chemistry, 2009, 114, 1371-1379.	8.2	35
244	Towards a better understanding of the pectin structure–function relationship in broccoli during processing: Part II — Analyses with anti-pectin antibodies. Food Research International, 2011, 44, 2896-2906.	6.2	35
245	Unravelling process-induced pectin changes in the tomato cell wall: An integrated approach. Food Chemistry, 2012, 132, 1534-1543.	8.2	35
246	Comparing the Effects of High Hydrostatic Pressure and Thermal Processing on Blanched and Unblanched Mango (Mangifera indica L.) Nectar: Using Headspace Fingerprinting as an Untargeted Approach. Food and Bioprocess Technology, 2014, 7, 3000-3011.	4.7	35
247	The use of a Time-Temperature-Integrator in conjunction with mathematical modelling for determining liquid/particle heat transfer coefficients. Journal of Food Engineering, 1992, 16, 197-214.	5.2	34
248	Evaluation of process value distribution with time temperature integrators. Food Research International, 1994, 27, 413-423.	6.2	34
249	Kinetic Study on the Changes in the Susceptibility of Egg White Proteins to Enzymatic Hydrolysis Induced by Heat and High Hydrostatic Pressure Pretreatment. Journal of Agricultural and Food Chemistry, 2004, 52, 5621-5626.	5.2	34
250	Quality changes of pasteurised mango juice during storage. Part II: Kinetic modelling of the shelf-life markers. Food Research International, 2015, 78, 410-423.	6.2	34
251	Influence of Low-temperature Blanching Combined with High-pressure Shift Freezing on the Texture of Frozen Carrots. Journal of Food Science, 2005, 70, S304-S308.	3.1	33
252	Immobilized αâ€amylase from <i>Bacillus licheniformis</i> : a potential enzymic time—temperature integrator for thermal processing. International Journal of Food Science and Technology, 1992, 27, 661-673.	2.7	33

#	Article	IF	CITATIONS
253	Quantifying the Influence of Thermal Process Parameters on in Vitro β-Carotene Bioaccessibility: A Case Study on Carrots. Journal of Agricultural and Food Chemistry, 2011, 59, 3162-3167.	5.2	33
254	Role of structural barriers in the in vitro bioaccessibility of anthocyanins in comparison with carotenoids. Food Chemistry, 2017, 227, 271-279.	8.2	33
255	FLUID-TO-PARTICLE HEAT TRANSFER COEFFICIENT DETERMINATION of HETEROGENEOUS FOODS: A REVIEW. Journal of Food Processing and Preservation, 1992, 16, 29-69.	2.0	32
256	A preliminary survey into the temperature conditions and residence time distribution of minimally processed MAP vegetables in Belgian retail display cabinets. International Journal of Refrigeration, 1994, 17, 436-444.	3.4	32
257	The Development and Use of an α-Amylase-based Time–Temperature Integrator to Evaluate in-Pack Pasteurization Processes. LWT - Food Science and Technology, 1997, 30, 94-100.	5.2	32
258	Modelling temperature variability in batch retorts and its impact on lethality distribution. Journal of Food Engineering, 2000, 44, 163-174.	5.2	32
259	Influence of rotational speed on the statistical variability of heat penetration parameters and on the non-uniformity of lethality in retort processing. Journal of Food Engineering, 2000, 45, 93-102.	5.2	32
260	Kinetics of alkaline phosphatase and lactoperoxidase inactivation, and of β-lactoglobulin denaturation in milk with different fat content. Journal of Dairy Research, 2002, 69, 541-553.	1.4	32
261	Inactivation Kinetics of Purified Tomato Polygalacturonase by Thermal and High-Pressure Processing. Journal of Agricultural and Food Chemistry, 2004, 52, 2697-2703.	5.2	32
262	The in situ observation of the temperature and pressure stability of recombinant Aspergillus aculeatus pectin methylesterase with Fourier transform IR spectroscopy reveals an unusual pressure stability of Î ² -helices. Biochemical Journal, 2005, 392, 565-571.	3.7	32
263	Comparison of enzymatic de-esterification of strawberry and apple pectin at elevated pressure by fungal pectinmethylesterase. Innovative Food Science and Emerging Technologies, 2007, 8, 93-101.	5.6	32
264	Role of precursors on the kinetics of acrylamide formation and elimination under low moisture conditions using a multiresponse approach – Part I: Effect of the type of sugar. Food Chemistry, 2009, 114, 116-126.	8.2	32
265	Beta-carotene isomerisation in mango puree as influenced by thermal processing and high-pressure homogenisation. European Food Research and Technology, 2013, 236, 155-163.	3.3	32
266	Lycopene and β-carotene transfer to oil and micellar phases during in vitro digestion of tomato and red carrot based-fractions. Food Research International, 2014, 64, 831-838.	6.2	32
267	Relation between in vitro lipid digestion and β-carotene bioaccessibility in β-carotene-enriched emulsions with different concentrations of l-α-phosphatidylcholine. Food Research International, 2015, 67, 60-66.	6.2	32
268	<i>In vitro</i> βâ€Carotene Bioaccessibility and Lipid Digestion in Emulsions: Influence of Pectin Type and Degree of Methylâ€Esterification. Journal of Food Science, 2016, 81, C2327-C2336.	3.1	32
269	Antioxidant Capacity of Beetroot: Traditional vs Novel Approaches. Plant Foods for Human Nutrition, 2017, 72, 266-273.	3.2	32
270	Insight into the evolution of flavor compounds during cooking of common beans utilizing a headspace untargeted fingerprinting approach. Food Chemistry, 2019, 275, 224-238.	8.2	32

#	Article	IF	CITATIONS
271	Advanced insight into the emulsifying and emulsion stabilizing capacity of carrot pectin subdomains. Food Hydrocolloids, 2020, 102, 105594.	10.7	32
272	Modeling and Prediction of Visual Shelf Life of Minimally Processed Endive. Journal of Food Science, 1996, 61, 1094-1098.	3.1	31
273	Kinetic Parameters for Pressure-Temperature Inactivation of Bacillus subtilis α-Amylase under Dynamic Conditions. Biotechnology Progress, 1997, 13, 617-623.	2.6	31
274	THERMAL INACTIVATION KENETICS of PECTINESTERASE EXTRACTED FROM ORANGES. Journal of Food Processing and Preservation, 1999, 23, 391-406.	2.0	31
275	Temperature-pressure-time combinations for the generation of common bean microstructures with different starch susceptibilities to hydrolysis. Food Research International, 2018, 106, 105-115.	6.2	31
276	OPTIMIZATION of SURFACE QUALITY RETENTION DURING the THERMAL PROCESSING of CONDUCTION HEATED FOODS USING VARIABLE TEMPERATURE RETORT PROFILES. Journal of Food Processing and Preservation, 1993, 17, 75-91.	2.0	30
277	Kinetics of quality changes of green peas and white beans during thermal processing. Journal of Food Engineering, 1995, 24, 361-377.	5.2	30
278	Model based process design of the combined high pressure and mild heat treatment ensuring safety and quality of a carrot simulant system. Journal of Food Engineering, 2007, 78, 1010-1021.	5.2	30
279	Slow softening of Kanzi apples (Malus×domestica L.) is associated with preservation of pectin integrity in middle lamella. Food Chemistry, 2016, 211, 883-891.	8.2	30
280	Generalized (semi)-empirical formulae for optimal sterilization temperatures of conduction-heated foods with infinite surface heat transfer coefficients. Journal of Food Engineering, 1993, 19, 141-158.	5.2	29
281	Non-uniformity of lethality in retort processes based on heat distribution and heat penetration data. Journal of Food Engineering, 2000, 45, 103-110.	5.2	29
282	Investigation of the Influence of Different Moisture Levels on Acrylamide Formation/Elimination Reactions Using Multiresponse Analysis. Journal of Agricultural and Food Chemistry, 2008, 56, 6460-6470.	5.2	29
283	Thermal and High-Pressure Stability of Pectinmethylesterase, Polygalacturonase, β-Galactosidase and α-Arabinofuranosidase in a Tomato Matrix: Towards the Creation of Specific Endogenous Enzyme Populations Through Processing. Food and Bioprocess Technology, 2013, 6, 3368-3380.	4.7	29
284	Comparing thermal and high pressure processing of carrots at different processing intensities by headspace fingerprinting. Innovative Food Science and Emerging Technologies, 2013, 18, 31-42.	5.6	29
285	A kinetic study of furan formation during storage of shelf-stable fruit juices. Journal of Food Engineering, 2015, 165, 74-81.	5.2	29
286	Kinetics of hydroxymethylfurfural, lactulose and furosine formation in milk with different fat content. Journal of Dairy Research, 2003, 70, 85-90.	1.4	28
287	Investigating the potential of <i>Bacillus subtilis</i> αâ€amylase as a pressureâ€ŧemperatureâ€ŧime indicator for high hydrostatic pressure pasteurization processes. Biotechnology Progress, 2009, 25, 1184-1193.	2.6	28
288	In situ pectin engineering as a tool to tailor the consistency and syneresis of carrot purée. Food Chemistry, 2012, 133, 146-155.	8.2	28

#	Article	IF	CITATIONS
289	Modeling Lycopene Degradation and Isomerization in the Presence of Lipids. Food and Bioprocess Technology, 2013, 6, 909-918.	4.7	28
290	Investigating the role of pectin in carrot cell wall changes during thermal processing: A microscopic approach. Innovative Food Science and Emerging Technologies, 2014, 24, 113-120.	5.6	28
291	The effect of high pressure homogenization and endogenous pectin-related enzymes on tomato purée consistency and serum pectin structure. Innovative Food Science and Emerging Technologies, 2017, 43, 35-44.	5.6	28
292	Ageing, dehulling and cooking of Bambara groundnuts: consequences for mineral retention and <i>in vitro</i> bioaccessibility. Food and Function, 2020, 11, 2509-2521.	4.6	28
293	Optimizing Thermal Process for Canned White Beans in Water Cascading Retorts. Journal of Food Science, 1994, 59, 828-832.	3.1	27
294	Pressure and temperature stability of water-soluble antioxidants in orange and carrot juice: a kinetic study. European Food Research and Technology, 2004, 219, 161.	3.3	27
295	Influence of high-pressure–low-temperature treatments on fruit and vegetable quality related enzymes. European Food Research and Technology, 2006, 223, 475-485.	3.3	27
296	Effect of temperature and pressure on the combined action of purified tomato pectinmethylesterase and polygalacturonase in presence of pectin. Enzyme and Microbial Technology, 2007, 40, 1141-1146.	3.2	27
297	Protein-based indicator system for detection of temperature differences in high pressure high temperature processing. Food Research International, 2010, 43, 862-871.	6.2	27
298	Chemical changes of thermally sterilized broccoli puree during shelf-life: Investigation of the volatile fraction by fingerprinting-kinetics. Food Research International, 2015, 67, 264-271.	6.2	27
299	Flavor characterization of native Peruvian chili peppers through integrated aroma fingerprinting and pungency profiling. Food Research International, 2018, 109, 250-259.	6.2	27
300	In vitro starch and protein digestion kinetics of cooked Bambara groundnuts depend on processing intensity and hardness sorting. Food Research International, 2020, 137, 109512.	6.2	27
301	The influence of temperature and gas mixtures on the growth of the intrinsic micro-organisms on cut endive: predictive versus actual growth. Food Microbiology, 1996, 13, 427-440.	4.2	26
302	Assessing the optimal experiment setup for first order kinetic studies by Monte Carlo analysis. Food Control, 2005, 16, 873-882.	5.5	26
303	Effect of Temperature and High Pressure on the Activity and Mode of Action of Fungal Pectin Methyl Esterase. Biotechnology Progress, 2008, 22, 1313-1320.	2.6	26
304	Modelling acrylamide changes in foods: from single-response empirical to multiresponse mechanistic approaches. Trends in Food Science and Technology, 2009, 20, 155-167.	15.1	26
305	Survival of Mycobacterium avium ssp. paratuberculosis in yoghurt and in commercial fermented milk products containing probiotic cultures. Journal of Applied Microbiology, 2011, 110, 1252-1261.	3.1	26
306	An integrated fingerprinting and kinetic approach to accelerated shelf-life testing of chemical changes in thermally treated carrot puree. Food Chemistry, 2015, 179, 94-102.	8.2	26

23

#	Article	IF	CITATIONS
307	Pectin-interactions and inÂvitro bioaccessibility of calcium and iron in particulated tomato-based suspensions. Food Hydrocolloids, 2015, 49, 164-175.	10.7	26
308	Carotenoid transfer to oil upon high pressure homogenisation of tomato and carrot based matrices. Journal of Functional Foods, 2015, 19, 775-785.	3.4	26
309	The potential of kiwifruit puree as a clean label ingredient to stabilize high pressure pasteurized cloudy apple juice during storage. Food Chemistry, 2018, 255, 197-208.	8.2	26
310	Diffusion of Glucose in Carrageenan Gels. Journal of Food Science, 1986, 51, 1544-1546.	3.1	25
311	Theoretical Consideration on the Influence of the z-Value of a Single Component Time/Temperature Integrator on Thermal Process Impact Evaluation. Journal of Food Protection, 1995, 58, 39-48.	1.7	25
312	Influence of sugars and polyols on the thermal stability of purified tomato and cucumber pectinmethylesterases: a basis for TTI development. Enzyme and Microbial Technology, 2003, 33, 544-555.	3.2	25
313	Pressure and Temperature Stability of 5-Methyltetrahydrofolic Acid:  A Kinetic Study. Journal of Agricultural and Food Chemistry, 2005, 53, 3081-3087.	5.2	25
314	Thermal Stability of Ascorbic Acid and Ascorbic Acid Oxidase in African Cowpea Leaves (Vigna) Tj ETQq0 0 0 rgB1	Qverlock	10 Tf 50 46
315	Impact of different large scale pasteurisation technologies and refrigerated storage on the headspace fingerprint of tomato juice. Innovative Food Science and Emerging Technologies, 2014, 26, 431-444.	5.6	25
316	Comparing the Impact of High-Pressure Processing and Thermal Processing on Quality of "Hayward― and "Jintao―Kiwifruit Purée: Untargeted Headspace Fingerprinting and Targeted Approaches. Food and Bioprocess Technology, 2016, 9, 2059-2069.	4.7	25
317	Molar mass influence on pectin-Ca 2+ adsorption capacity, interaction energy and associated functionality: Gel microstructure and stiffness. Food Hydrocolloids, 2018, 85, 331-342.	10.7	25
318	Influence of pH and Composition on Nonenzymatic Browning of Shelf-Stable Orange Juice during Storage. Journal of Agricultural and Food Chemistry, 2020, 68, 5402-5411.	5.2	25
319	Pulse seeds as promising and sustainable source of ingredients with naturally bioencapsulated nutrients: Literature review and outlook. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1524-1553.	11.7	25
320	High Pressure Thermal Inactivation Kinetics of a Plasmin System. Journal of Dairy Science, 2004, 87, 2351-2358.	3.4	24
321	Role of precursors on the kinetics of acrylamide formation and elimination under low moisture conditions using a multiresponse approach – Part II: Competitive reactions. Food Chemistry, 2009, 114, 535-546.	8.2	24
322	Kinetic study of Bacillus cereus spore inactivation by high pressure high temperature treatment. Innovative Food Science and Emerging Technologies, 2014, 26, 12-17.	5.6	24
323	Reduction of Furan Formation by High-Pressure High-Temperature Treatment of Individual Vegetable Purées. Food and Bioprocess Technology, 2014, 7, 2679.	4.7	24

³²⁴ I. The development of an enzymic time temperature integrator to assess thermal efficacy of sterilization of lowâ€acid canned foods. Food Biotechnology, 1997, 11, 147-168. 1.5

#	Article	IF	CITATIONS
325	Enzyme sensitivity towards high pressure at low temperature. Food Biotechnology, 1998, 12, 263-277.	1.5	23
326	Kinetics of Pressure Inactivation at Subzero and Elevated Temperature of Lipoxygenase in Crude Green Bean (Phaseolus vulgaris L.) Extract. Biotechnology Progress, 2000, 16, 109-115.	2.6	23
327	Validation and Use of an Enzymic Time-Temperature Integrator to Monitor Thermal Impacts Inside a Solid/Liquid Model Food. Biotechnology Progress, 2002, 18, 1087-1094.	2.6	23
328	Activity and Process Stability of Purified Green Pepper (Capsicum annuum) Pectin Methylesterase. Journal of Agricultural and Food Chemistry, 2004, 52, 5724-5729.	5.2	23
329	Purification and Thermal and High-Pressure Inactivation of Pectinmethylesterase Isoenzymes from Tomatoes (Lycopersicon esculentum): A Novel Pressure Labile Isoenzyme. Journal of Agricultural and Food Chemistry, 2007, 55, 9259-9265.	5.2	23
330	Mechanism and Related Kinetics of 5-Methyltetrahydrofolic Acid Degradation during Combined High Hydrostatic Pressureâ^'Thermal Treatments. Journal of Agricultural and Food Chemistry, 2009, 57, 6803-6814.	5.2	23
331	Plant pectin methylesterase and its inhibitor from kiwi fruit: Interaction analysis by surface plasmon resonance. Food Chemistry, 2010, 121, 207-214.	8.2	23
332	Processing as a tool to manage digestive barriers in plant-based foods: recent advances. Current Opinion in Food Science, 2020, 35, 1-9.	8.0	23
333	<i>In vitro</i> protein and starch digestion kinetics of individual chickpea cells: from static to more complex <i>in vitro</i> digestion approaches. Food and Function, 2021, 12, 7787-7804.	4.6	23
334	Targeted modifications of citrus pectin to improve interfacial properties and the impact on emulsion stability. Food Hydrocolloids, 2022, 132, 107841.	10.7	23
335	Influence of pH, Benzoic Acid, Glutathione, EDTA, 4-Hexylresorcinol, and Sodium Chloride on the Pressure Inactivation Kinetics of Mushroom Polyphenol Oxidase. Journal of Agricultural and Food Chemistry, 1999, 47, 3526-3530.	5.2	22
336	Influence of ?-subunit on thermal and high-pressure process stability of tomato polygalacturonase. Biotechnology and Bioengineering, 2004, 86, 543-549.	3.3	22
337	Effect of Intrinsic and Extrinsic Factors on the Interaction of Plant Pectin Methylesterase and Its Proteinaceous Inhibitor from Kiwi Fruit. Journal of Agricultural and Food Chemistry, 2004, 52, 8144-8150.	5.2	22
338	Effect of pH on Thermal and/or Pressure Inactivation of Victoria Grape (<i>Vitis vinifera sativa</i>) Polyphenol Oxidase: A Kinetic Study. Journal of Food Science, 2005, 70, E301.	3.1	22
339	Characterisation and screening of the process stability of bioactive compounds in red fruit paste and red fruit juice. European Food Research and Technology, 2012, 234, 593-605.	3.3	22
340	Isothermal titration calorimetry to study the influence of citrus pectin degree and pattern of methylesterification on Zn2+ interaction. Carbohydrate Polymers, 2018, 197, 460-468.	10.2	22
341	Combining untargeted, targeted and sensory data to investigate the impact of storage on food volatiles: A case study on strawberry juice. Food Research International, 2018, 113, 382-391.	6.2	22
342	Impact of processing and storage conditions on color stability of strawberry puree: The role of PPO reactions revisited. Journal of Food Engineering, 2021, 294, 110402.	5.2	22

#	Article	IF	CITATIONS
343	Application of multivariate data analysis for food quality investigations: An example-based review. Food Research International, 2022, 151, 110878.	6.2	22
344	Development characterization and use of a high-performance enzymatic time-temperature integrator for the control of sterilization process' impacts. Biotechnology and Bioengineering, 2004, 88, 15-25.	3.3	21
345	Bacillus licheniformis α-amylase immobilized on glass beads and equilibrated at low moisture content: potentials as a Time–Temperature Integrator for sterilisation processes. Innovative Food Science and Emerging Technologies, 2004, 5, 317-325.	5.6	21
346	Enzymatic cell wall degradation of highâ€pressureâ€homogenized tomato puree and its effect on lycopene bioaccessibility. Journal of the Science of Food and Agriculture, 2016, 96, 254-261.	3.5	21
347	The impact of postharvest storage and cooking time on mineral bioaccessibility in common beans. Food and Function, 2020, 11, 7584-7595.	4.6	21
348	Pulsed electric field and mild thermal processing affect the cooking behaviour of carrot tissues (Daucus carota) and the degree of methylesterification of carrot pectin. Innovative Food Science and Emerging Technologies, 2020, 66, 102483.	5.6	21
349	Simultaneous optimisation of surface quality during the sterilisation of packed foods using constant and variable retort temperature profiles. Journal of Food Engineering, 1996, 30, 283-297.	5.2	20
350	Analysis of the kinetic patterns of horseradish peroxidase thermal inactivation in sodium phosphate buffer solutions of different ionic strength. International Journal of Food Science and Technology, 1996, 31, 223-231.	2.7	20
351	Combined thermal and high pressure inactivation kinetics of tomato lipoxygenase. European Food Research and Technology, 2006, 222, 636-642.	3.3	20
352	SAFE ICE: Low-temperature pressure processing of foods: Safety and quality aspects, process parameters and consumer acceptance. Journal of Food Engineering, 2007, 83, 293-315.	5.2	20
353	Influence of pilot scale in pack pasteurization and sterilization treatments on nutritional and textural characteristics of carrot pieces. Food Research International, 2013, 50, 526-533.	6.2	20
354	lsomerisation of carrot β-carotene in presence of oil during thermal and combined thermal/high pressure processing. Food Chemistry, 2013, 138, 1515-1520.	8.2	20
355	Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores. International Journal of Food Microbiology, 2015, 197, 45-52.	4.7	20
356	Furan formation as a function of pressure, temperature and time conditions in spinach purée. LWT - Food Science and Technology, 2015, 64, 565-570.	5.2	20
357	Thermal inactivation kinetics of proteases and polyphenoloxidase in brown shrimp (Crangon) Tj ETQq1 1 0.7843	14 _{.7} gBT /C	Dverlock 10 Ti
358	A critical analysis of mathematical procedures for the evaluation and design of in ontainer thermal processes for foods. Critical Reviews in Food Science and Nutrition, 1997, 37, 411-441.	10.3	19
359	The Use of α-Amylase at Reduced Water Content to Develop Time Temperature Integrators for Sterilization Processes. LWT - Food Science and Technology, 1998, 31, 467-472.	5.2	19
360	Influence of pH and high pressure on the thermal inactivation kinetics of horseradish peroxidase. Food Biotechnology, 1999, 13, 13-32.	1.5	19

#	Article	IF	CITATIONS
361	Implications of β-Mercaptoethanol in Relation to Folate Stability and to Determination of Folate Degradation Kinetics during Processing:Â A Case Study on [6S]-5-Methyltetrahydrofolic Acid. Journal of Agricultural and Food Chemistry, 2004, 52, 8247-8254.	5.2	19
362	Quality optimization of conduction heating foods sterilized in different packages. International Journal of Food Science and Technology, 1994, 29, 515-530.	2.7	19
363	Use of pectinmethylesterase and calcium in osmotic dehydration and osmodehydrofreezing of strawberries. European Food Research and Technology, 2008, 226, 1145-1154.	3.3	19
364	From Time Temperature Integrator Kinetics to Time Temperature Integrator Tolerance Levels: Heat-Treated Milk. Biotechnology Progress, 2008, 20, 1-12.	2.6	19
365	Furan formation during storage and reheating of sterilised vegetable purées. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 161-169.	2.3	19
366	Impact of different sequences of mechanical and thermal processing on the rheological properties of <i>Porphyridium cruentum</i> and <i>Chlorella vulgaris</i> as functional food ingredients. Food and Function, 2018, 9, 2433-2446.	4.6	19
367	From single to multiresponse modelling of food digestion kinetics: The case of lipid digestion. Journal of Food Engineering, 2019, 260, 40-49.	5.2	19
368	Complexation of pectins varying in overall charge with lysozyme in aqueous buffered solutions. Food Hydrocolloids, 2019, 94, 268-278.	10.7	19
369	Kinetics of the Pectin Methylesterase Catalyzed De-Esterification of Pectin in Frozen Food Model Systems. Biotechnology Progress, 2002, 18, 221-228.	2.6	18
370	The Effect of Brine Ingredients on Carrot Texture during Thermal Processing in Relation to Pectin Depolymerization due to the ?-Elimination Reaction. Journal of Food Science, 2006, 71, E370-E375.	3.1	18
371	Kinetics of (6R,S) 5-formyltetrahydrofolic acid isobaric–isothermal degradation in a model system. European Food Research and Technology, 2006, 223, 325-331.	3.3	18
372	Limited multilayer desorption of brown, parboiled rice. International Journal of Food Science and Technology, 2007, 22, 219-223.	2.7	18
373	Thermal and High-Pressure Stability of Pectin-Converting Enzymes in Broccoli and Carrot Purée: Towards the Creation of Specific Endogenous Enzyme Populations Through Processing. Food and Bioprocess Technology, 2014, 7, 1713-1724.	4.7	18
374	A transcriptomics-based kinetic model for enzyme-induced pectin degradation in apple (Malus $ ilde{A}$ —) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
375	Characterization and Degradation of Pectic Polysaccharides in Cocoa Pulp. Journal of Agricultural and Food Chemistry, 2017, 65, 9726-9734.	5.2	18
376	Changes in the Soluble and Insoluble Compounds of Shelf-Stable Orange Juice in Relation to Non-Enzymatic Browning during Storage. Journal of Agricultural and Food Chemistry, 2019, 67, 12854-12862.	5.2	18
377	Pectin and phytic acid reduce mineral bioaccessibility in cooked common bean cotyledons regardless of cell wall integrity. Food Research International, 2020, 137, 109685.	6.2	18

378Understanding the effect of time, temperature and salts on carrageenan extraction from Chondrus
crispus. Algal Research, 2021, 58, 102371.4.618

#	Article	IF	CITATIONS
379	Understanding the impact of diverse structural properties of homogalacturonan rich citrus pectin-derived compounds on their emulsifying and emulsion stabilizing potential. Food Hydrocolloids, 2022, 125, 107343.	10.7	18
380	THEORETICAL CONSIDERATIONS ON DESIGN of MULTICOMPONENT TIME TEMPERATURE INTEGRATORS IN EVALUATION of THERMAL PROCESSES. Journal of Food Processing and Preservation, 1993, 17, 369-389.	2.0	17
381	Feasibility of the use of a Time—Temperature Integrator and a mathematical model to determine fluid-to-particle heat transfer coefficients. Food Research International, 1994, 27, 39-51.	6.2	17
382	Role of temperature distribution studies in the evaluation and identification of processing conditions for static and rotary water cascading retorts. Journal of Food Engineering, 2001, 48, 61-68.	5.2	17
383	Trypsin Inhibition Activity of Heat-Denatured Ovomucoid: A Kinetic Study. Biotechnology Progress, 2008, 20, 82-86.	2.6	17
384	Solvent engineering as a tool in enzymatic indicator development for mild high pressure pasteurization processing. Journal of Food Engineering, 2010, 97, 301-310.	5.2	17
385	Influence of Thermal Processing on Hydrolysis and Stability of Folate Poly-γ-glutamates in Broccoli (<i>Brassica oleracea var. italica</i>), Carrot (<i>Daucus carota</i>) and Tomato (<i>Lycopersicon) Tj ETQq1 1 C</i>).7 & 42814 r	gB 1 7/Overloc
386	Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator. Journal of Food Engineering, 2011, 105, 36-47.	5.2	17
387	An explorative study on the cell wall polysaccharides in the pulp and peel of dragon fruits (Hylocereus spp.). European Food Research and Technology, 2013, 237, 341-351.	3.3	17
388	Microscopic evidence for Ca2+ mediated pectin–pectin interactions in carrot-based suspensions. Food Chemistry, 2015, 188, 126-136.	8.2	17
389	Effect of pH and salts on microstructure and viscoelastic properties of lemon peel acid insoluble fiber suspensions upon high pressure homogenization. Food Hydrocolloids, 2018, 82, 144-154.	10.7	17
390	Instability of common beans during storage causes hardening: The role of glass transition phenomena. Food Research International, 2019, 121, 506-513.	6.2	17
391	Evaluation of storage stability of low moisture whole common beans and their fractions through the use of state diagrams. Food Research International, 2021, 140, 109794.	6.2	17
392	The Impact of Drying and Rehydration on the Structural Properties and Quality Attributes of Pre-Cooked Dried Beans. Foods, 2021, 10, 1665.	4.3	17
393	Heat Distribution in Industrial-scale Water Cascading (Rotary) Retort. Journal of Food Science, 1998, 63, 882-886.	3.1	16
394	Identification of pressure/temperature combinations for optimal pepper (Capsicum annuum) pectin methylesterase activity. Enzyme and Microbial Technology, 2006, 38, 831-838.	3.2	16
395	Effect of high-pressure induced ice I/ice III-transition on the texture and microstructure of fresh and pretreated carrots and strawberries. Food Research International, 2007, 40, 1276-1285.	6.2	16
396	Influence of environmental conditions on thermal stability of recombinant Aspergillus aculeatus pectinmethylesterase. Food Chemistry, 2008, 111, 912-920.	8.2	16

#	Article	IF	CITATIONS
397	L-ascorbic acid improves the serum folate response to an oral dose of [6S]-5-methyltetrahydrofolic acid in healthy men. European Journal of Clinical Nutrition, 2008, 62, 1224-1230.	2.9	16
398	Acidification, crushing and thermal treatments can influence the profile and stability of folate poly-γ-glutamates in broccoli (Brassica oleracea L. var. italica). Food Chemistry, 2009, 117, 568-575.	8.2	16
399	Mapping temperature uniformity in industrial scale HP equipment using enzymatic pressure–temperature–time indicators. Journal of Food Engineering, 2010, 98, 93-102.	5.2	16
400	Structural design of natural plant-based foods to promote nutritional quality. Trends in Food Science and Technology, 2012, 24, 47-59.	15.1	16
401	Headspace fingerprinting and sensory evaluation to discriminate between traditional and alternative pasteurization of watermelon juice. European Food Research and Technology, 2016, 242, 787-803.	3.3	16
402	Kinetics of Strecker aldehyde formation during thermal and high pressure high temperature processing of carrot puree. Innovative Food Science and Emerging Technologies, 2017, 39, 88-93.	5.6	16
403	Unravelling the structure of serum pectin originating from thermally and mechanically processed carrot-based suspensions. Food Hydrocolloids, 2018, 77, 482-493.	10.7	16
404	Microscopic evidence for pectin changes in hard-to-cook development of common beans during storage. Food Research International, 2021, 141, 110115.	6.2	16
405	How postharvest variables in the pulse value chain affect nutrient digestibility and bioaccessibility. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5067-5096.	11.7	16
406	Reaction pathways and factors influencing nonenzymatic browning in shelfâ€stable fruit juices during storage. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5698-5721.	11.7	16
407	Theoretical consideration of the general validity of the Equivalent Point Method in thermal process evaluation. Journal of Food Engineering, 1995, 24, 225-248.	5.2	15
408	Potential Bacillus subtilis α-Amylase-Based Time-Temperature Integrators To Evaluate Pasteurization Processes. Journal of Food Protection, 1996, 59, 261-267.	1.7	15
409	Modeling the kinetics of isobaric-isothermal inactivation of Bacillus subtilis α-amylase with artificial neural networks. Journal of Food Engineering, 1998, 36, 263-279.	5.2	15
410	Nonuniformity in Lethality and Quality in Thermal Process Optimization: A Case Study on Color Degradation of Green Peas. Journal of Food Science, 2003, 68, 545-550.	3.1	15
411	Modelling the kinetics of enzyme-catalysed reactions in frozen systems: the alkaline phosphatase catalysed hydrolysis of di-sodium-p-nitrophenyl phosphate. Innovative Food Science and Emerging Technologies, 2004, 5, 335-344.	5.6	15
412	Process stability of Capsicum annuum pectin methylesterase in model systems, pepper puree and intact pepper tissue. European Food Research and Technology, 2005, 221, 452-458.	3.3	15
413	High pressure pasteurization of apple pieces in syrup: Microbiological shelf-life and quality evolution during refrigerated storage. Innovative Food Science and Emerging Technologies, 2012, 16, 259-266.	5.6	15
414	Evaluating the potential of high pressure high temperature and thermal processing on volatile compounds, nutritional and structural properties of orange and yellow carrots. European Food Research and Technology, 2015, 240, 183-198.	3.3	15

#	Article	IF	CITATIONS
415	Kinetics of heat induced muscle protein denaturation of brown shrimp (Crangon crangon). Journal of Food Engineering, 2016, 191, 88-94.	5.2	15
416	Carotenoid stability and lipid oxidation during storage of low-fat carrot and tomato based systems. LWT - Food Science and Technology, 2017, 80, 470-478.	5.2	15
417	Zinc bioaccessibility is affected by the presence of calcium ions and degree of methylesterification in pectin-based model systems. Food Hydrocolloids, 2019, 90, 206-215.	10.7	15
418	Application of near-infrared spectroscopy to predict the cooking times of aged common beans (Phaseolus vulgaris L.). Journal of Food Engineering, 2020, 284, 110056.	5.2	15
419	Kinetic Modeling of <i>In Vitro</i> Small Intestinal Lipid Digestion as Affected by the Emulsion Interfacial Composition and Gastric Prelipolysis. Journal of Agricultural and Food Chemistry, 2021, 69, 4708-4719.	5.2	15
420	The Structure and Composition of Extracted Pectin and Residual Cell Wall Material from Processing Tomato: The Role of a Stepwise Approach versus High-Pressure Homogenization-Facilitated Acid Extraction. Foods, 2021, 10, 1064.	4.3	15
421	Effect of pulsed electric field and mild thermal processing on texture-related pectin properties to better understand carrot (Daucus carota) texture changes during subsequent cooking. Innovative Food Science and Emerging Technologies, 2021, 70, 102700.	5.6	15
422	In vitro gastric lipid digestion of emulsions with mixed emulsifiers: Correlation between lipolysis kinetics and interfacial characteristics. Food Hydrocolloids, 2022, 128, 107576.	10.7	15
423	Statistical Variability Of Heat Penetration Parameters in Relation to Process Design. Journal of Food Science, 2000, 65, 685-693.	3.1	14
424	Overview: Effect of High Pressure on Enzymes Related to Food Quality - Kinetics as a Basis for Process Engineering. High Pressure Research, 2002, 22, 613-618.	1.2	14
425	THERMAL AND HIGH PRESSURE INACTIVATION KINETICS OF VICTORIA GRAPE POLYPHENOL OXIDASE: FROM MODEL SYSTEMS TO GRAPE MUST. Journal of Food Process Engineering, 2006, 29, 269-286.	2.9	14
426	Development and evaluation of monoclonal antibodies as probes to assess the differences between two tomato pectin methylesterase isoenzymes. Journal of Immunological Methods, 2009, 349, 18-27.	1.4	14
427	Kinetics of thermal and high-pressure inactivation of avocado polygalacturonase. Innovative Food Science and Emerging Technologies, 2014, 26, 51-58.	5.6	14
428	Deliberate processing of carrot purées entails tailored serum pectin structures. Innovative Food Science and Emerging Technologies, 2016, 33, 515-523.	5.6	14
429	InÂvitro digestibility kinetics of oil-in-water emulsions structured by water-soluble pectin-protein mixtures from vegetable purées. Food Hydrocolloids, 2018, 80, 231-244.	10.7	14
430	Production and molecular characterization of tailored citrus pectin-derived compounds. Food Chemistry, 2022, 367, 130635.	8.2	14
431	Effects of High Pressure on Enzymes Related to Food Quality. Food Engineering Series, 2001, , 115-166.	0.7	14
432	Effects of High Pressure on Chemical Reactions Related to Food Quality. Food Engineering Series, 2001, , 167-188.	0.7	14

#	Article	IF	CITATIONS
433	Obstruction Effect of Carrageenan and Gelatin on the Diffusion of Glucose. Journal of Food Science, 1987, 52, 1113-1114.	3.1	13
434	KINETICS of THERMAL SOFTENING of WHITE BEANS EVALUATED BY A SENSORY PANEL and the FMC TENDEROMETER. Journal of Food Processing and Preservation, 1994, 18, 407-420.	2.0	13
435	II. The use of an enzymic time temperature integrator to monitor lethal efficacy of sterilization of lowâ€acid canned foods. Food Biotechnology, 1997, 11, 169-188.	1.5	13
436	Risk analysis of the thermal sterilization process International Journal of Food Microbiology, 1999, 47, 51-57.	4.7	13
437	Influence of seasonal variation on kinetics of time temperature integrators for thermally processed milk. Journal of Dairy Research, 2003, 70, 217-225.	1.4	13
438	Effect of temperature, pressure and calcium soaking pre-treatments and pressure shift freezing on the texture and texture evolution of frozen green bell peppers (Capsicum annuum). European Food Research and Technology, 2007, 226, 33-43.	3.3	13
439	Improving the hardness of thermally processed carrots by selective pretreatments. Food Research International, 2010, 43, 1297-1303.	6.2	13
440	A Pectin-Methylesterase-Inhibitor-Based Molecular Probe for <i>in Situ</i> Detection of Plant Pectin Methylesterase Activity. Journal of Agricultural and Food Chemistry, 2010, 58, 5449-5456.	5.2	13
441	Effect of Pilotâ€6cale Aseptic Processing on Tomato Soup Quality Parameters. Journal of Food Science, 2011, 76, C714-23.	3.1	13
442	Effect of Enzyme Homogenization on the Physical Properties of Carrot Cell Wall Suspensions. Food and Bioprocess Technology, 2015, 8, 1377-1385.	4.7	13
443	Investigating chemical changes during shelf-life of thermal and high-pressure high-temperature sterilised carrot purees: A †fingerprinting kinetics' approach. Food Chemistry, 2015, 185, 119-126.	8.2	13
444	The evolution of quality characteristics of mango piece after pasteurization and during shelf life in a mango juice drink. European Food Research and Technology, 2016, 242, 703-712.	3.3	13
445	Heat and Light Stability of Pumpkin-Based Carotenoids in a Photosensitive Food: A Carotenoid-Coloured Beverage. Foods, 2022, 11, 485.	4.3	13
446	THE THERMAL STABILITY OF ASPERGILLUS ORYZAE ALPHA-AMYLASE IN PRESENCE OF SUGARS AND POLYOLS. Journal of Food Process Engineering, 2006, 29, 287-303.	2.9	12
447	Xylanase B from the hyperthermophile Thermotoga maritima as an indicator for temperature gradients in high pressure high temperature processing. Innovative Food Science and Emerging Technologies, 2011, 12, 187-196.	5.6	12
448	The Effect of Endogenous Pectinases on the Consistency of Tomato–Carrot Purée Mixes. Food and Bioprocess Technology, 2014, 7, 2570-2580.	4.7	12
449	Role of mechanical forces in the stomach phase on the in vitro bioaccessibility of β-carotene. Food Research International, 2014, 55, 271-280.	6.2	12
450	Quality changes of pasteurised mango juice during storage. Part I: Selecting shelf-life markers by integration of a targeted and untargeted multivariate approach. Food Research International, 2015, 78, 396-409.	6.2	12

#	Article	IF	CITATIONS
451	Carotenoid transfer to oil during thermal processing of low fat carrot and tomato particle based suspensions. Food Research International, 2016, 86, 64-73.	6.2	12
452	Quantifying the Effects of Postharvest Storage and Soaking Pretreatments on the Cooking Quality of Common Beans (<i>Phaseolus vulgaris</i>). Journal of Food Processing and Preservation, 2017, 41, e13036.	2.0	12
453	Process-induced water-soluble biopolymers from broccoli and tomato purées: Their molecular structure in relation to their emulsion stabilizing capacity. Food Hydrocolloids, 2018, 81, 312-327.	10.7	12
454	Impact of processing on the production of a carotenoid-rich Cucurbita maxima cv. Hokkaido pumpkin juice. Food Chemistry, 2022, 380, 132191.	8.2	12
455	>Kinetics for heat and pressureâ€ŧemperature inactivation of <i>bacillus subtilis α</i> â€ʉmylase. Food Biotechnology, 1996, 10, 105-129.	1.5	11
456	Mathematical Models for Combined High Pressure and Thermal Plasmin Inactivation Kinetics in Two Model Systems. Journal of Dairy Science, 2004, 87, 4042-4049.	3.4	11
457	The influence of moisture content on the thermostability of Aspergillus oryzae α-amylase. Enzyme and Microbial Technology, 2005, 37, 167-174.	3.2	11
458	Influence of Reducing Carbohydrates on (6 <i>S</i>)-5-Methyltetrahydrofolic Acid Degradation during Thermal Treatments. Journal of Agricultural and Food Chemistry, 2010, 58, 6190-6199.	5.2	11
459	Adequacy of current pasteurization standards to inactivate Mycobacterium paratuberculosis in milk and phosphate buffer. International Dairy Journal, 2011, 21, 295-304.	3.0	11
460	Thermal processing of kale purée: The impact of process intensity and storage on different quality related aspects. Innovative Food Science and Emerging Technologies, 2019, 58, 102213.	5.6	11
461	Impact of processing on the functionalization of pumpkin pomace as a food texturizing ingredient. Innovative Food Science and Emerging Technologies, 2021, 69, 102669.	5.6	11
462	Prediction of cooking times of freshly harvested common beans and their susceptibility to develop the hard-to-cook defect using near infrared spectroscopy. Journal of Food Engineering, 2021, 298, 110495.	5.2	11
463	Development and validation of a rapid method to quantify neutral lipids by NP-HPLC-charged aerosol detector. Journal of Food Composition and Analysis, 2021, 102, 104022.	3.9	11
464	Insight into pectin-cation-phytate theory of hardening in common bean varieties with different sensitivities to hard-to-cook. Food Research International, 2022, 151, 110862.	6.2	11
465	Combined use of the equivalent point method and a multicomponent time-temperature integrator in thermal process evaluation: influence of kinetic characteristics and reference temperature. Food Control, 1994, 5, 249-256.	5.5	10
466	Evaluation of process deviations, consisting of drops in rotational speed, during thermal processing of foods in rotary water cascading retorts. Journal of Food Engineering, 1996, 30, 327-338.	5.2	10
467	AN EMPIRICAL EQUATION FOR THE DESCRIPTION OF OPTIMUM VARIABLE RETORT TEMPERATURE PROFILES THAT MAXIMIZE SURFACE QUALITY RETENTION IN THERMALLY PROCESSED FOODS. Journal of Food Processing and Preservation, 1996, 20, 251-264.	2.0	10
468	Application of sensitivity functions for analysing the impact of temperature non-uniformity in batch sterilizers. Journal of Food Engineering, 1998, 37, 1-10.	5.2	10

#	Article	IF	CITATIONS
469	Kinetics of the Alkaline Phosphatase Catalyzed Hydrolysis of Disodium p-Nitrophenyl Phosphate: Effects of Carbohydrate Additives, Low Temperature, and Freezing. Biotechnology Progress, 2004, 20, 1467-1478.	2.6	10
470	Variability in quality of white and green beans during in-pack sterilization. Journal of Food Engineering, 2006, 73, 149-156.	5.2	10
471	Advances in understanding pectin methylesterase inhibitor in kiwi fruit: an immunological approach. Planta, 2011, 233, 287-298.	3.2	10
472	Recovery of genipin from genipap fruit by high pressure processing. LWT - Food Science and Technology, 2015, 63, 1347-1350.	5.2	10
473	Shelfâ€life dating of shelfâ€stable strawberry juice based on survival analysis of consumer acceptance information. Journal of the Science of Food and Agriculture, 2018, 98, 3437-3445.	3.5	10
474	The effect of thermal processing and storage on the color stability of strawberry puree originating from different cultivars. LWT - Food Science and Technology, 2021, 145, 111270.	5.2	10
475	Antinutrient to mineral molar ratios of raw common beans and their rapid prediction using near-infrared spectroscopy. Food Chemistry, 2022, 368, 130773.	8.2	10
476	Towards understanding the modulation of in vitro gastrointestinal lipolysis kinetics through emulsions with mixed interfaces. Food Hydrocolloids, 2022, 124, 107240.	10.7	10
477	Effect of processing and microstructural properties of chickpea-flours on in vitro digestion and appetite sensations. Food Research International, 2022, 157, 111245.	6.2	10
478	Strategic choices for in vitro food digestion methodologies enabling food digestion design. Trends in Food Science and Technology, 2022, 126, 61-72.	15.1	10
479	High Pressure and Thermal Denaturation Kinetics of Soybean Lipoxygenase: a Study based on Gel Electrophoresis. LWT - Food Science and Technology, 1998, 31, 680-686.	5.2	9
480	Combined Use of Two Single-Component Enzymatic Time-Temperature Integrators: Application to Industrial Continuous Rotary Processing of Canned Ravioli. Journal of Food Protection, 2005, 68, 375-383.	1.7	9
481	The relation between (bio-)chemical, morphological, and mechanical properties of thermally processed carrots as influenced by high-pressure pretreatment condition. European Food Research and Technology, 2007, 226, 127-135.	3.3	9
482	Kinetics of Thermal Inactivation of Peroxidase and Color Degradation of African Cowpea (<i>Vigna) Tj ETQq0 0 0</i>	rgBT /Ove	rlock 10 Tf 5
483	Generality and specificity of the binding behaviour of lysozyme with pectin varying in local charge density and overall charge. Food Hydrocolloids, 2020, 99, 105345.	10.7	9
484	Co-Ingestion of Black Carrot and Strawberry. Effects on Anthocyanin Stability, Bioaccessibility and Uptake. Foods, 2020, 9, 1595.	4.3	9
485	Towards improved understanding of the viscoelastic properties of functionalized lemon peel fibers in suspension based on microstructure, hydration value and swelling volume. Journal of Food Engineering, 2020, 278, 109950.	5.2	9
486	Insight into nonâ€enzymatic browning of shelfâ€stable orange juice during storage: A fractionation and kinetic approach. Journal of the Science of Food and Agriculture, 2020, 100, 3765-3775.	3.5	9

#	Article	IF	CITATIONS
487	Impact of Processing and Storage Conditions on the Volatile Profile of Whole Chickpeas (<i>Cicer) Tj ETQq1 1 0</i>	.784314 r 2.7	gBŢ /Overloc
488	Impact of cell intactness and starch state on the thickening potential of chickpea flours in water-flour systems. LWT - Food Science and Technology, 2021, 146, 111409.	5.2	9
489	Utilizing Hydrothermal Processing to Align Structure and In Vitro Digestion Kinetics between Three Different Pulse Types. Foods, 2022, 11, 206.	4.3	9
490	Size Exclusion Chromatography To Gain Insight into the Complex Formation of Carrot Pectin Methylesterase and Its Inhibitor from Kiwi Fruit As Influenced by Thermal and High-Pressure Processing. Journal of Agricultural and Food Chemistry, 2009, 57, 11218-11225.	5.2	8
491	Potential of 1H NMR fingerprinting and a model system approach to study non-enzymatic browning in shelf-stable orange juice during storage. Food Research International, 2021, 140, 110062.	6.2	8
492	Modified Rhamnogalacturonan-Rich Apple Pectin-Derived Structures: The Relation between Their Structural Characteristics and Emulsifying and Emulsion-Stabilizing Properties. Foods, 2021, 10, 1586.	4.3	8
493	Functionalization of pectin-depleted residue from different citrus by-products by high pressure homogenization. Food Hydrocolloids, 2022, 129, 107638.	10.7	8
494	Recent advances in process assessment and optimisation. Meat Science, 1996, 43, 81-98.	5.5	7
495	Inactivation kinetics of horseradish peroxidase in organic solvents of different hydrophobicity at different water contents. International Journal of Food Science and Technology, 1996, 31, 233-240.	2.7	7
496	A SEMI-EMPIRICAL APPROACH TO HANDLE BROKEN-LINE HEATING: DETERMINATION OF EMPIRICAL PARAMETERS AND EVALUATION OF PROCESS DEVIATIONS. Journal of Food Processing and Preservation, 1996, 20, 331-346.	2.0	7
497	Extended Study on the Influence of z-Value(s) of Single and Multicomponent Time-Temperature Integrators on the Accuracy of Quantitative Thermal Process Assessment. Journal of Food Protection, 2005, 68, 384-395.	1.7	7
498	Experimental validation of models for predicting optimal surface quality sterilization temperatures. International Journal of Food Science and Technology, 1994, 29, 227-241.	2.7	7
499	Rheological properties of Ca2+-gels of partially methylesterified polygalacturonic acid: Effect of "mixed―patterns of methylesterification. Carbohydrate Polymers, 2012, 88, 37-45.	10.2	7
500	Effect of harvest age and thermal processing on poly-Î ³ -glutamate folates and minerals in African cowpea leaves (Vigna unguiculata). Journal of Food Composition and Analysis, 2012, 25, 160-165.	3.9	7
501	Effect of calcium ions and pH on the structure and rheology of carrot-derived suspensions. Food Hydrocolloids, 2014, 36, 382-391.	10.7	7
502	Study of mango endogenous pectinases as a tool to engineer mango purée consistency. Food Chemistry, 2015, 172, 272-282.	8.2	7
503	Effect of oxygen availability and pH on the furan concentration formed during thermal preservation of plant-based foods. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 1-11.	2.3	7

Thermal inactivation of pectin methylesterase from different potato cultivars (Solanum tuberosum) Tj ETQq0 0 0 rg $_{5.2}^{BT}$ /Overlock 10 Tf 5 $_{5.2}^{SO4}$

#	Article	IF	CITATIONS
505	Mathematical Modeling of Temperature and Gas Composition Effects on Visual Quality Changes of Cut Endive. Journal of Food Science, 1996, 61, 613-620.	3.1	6
506	Thermal and pressureâ€ŧemperature denaturation kinetics of <i>bacillus subtilis</i> αâ€amylase: A study based on gel electrophoresis. Food Biotechnology, 1997, 11, 241-272.	1.5	6
507	Modified Atmosphere Packaging of Cut Belgian Endives. Journal of Food Science, 2002, 67, 2202-2206.	3.1	6
508	Kinetics of the Alkaline Phosphatase Catalyzed Hydrolysis of Disodium p-Nitrophenyl Phosphate in Frozen Model Systems. Biotechnology Progress, 2002, 18, 1249-1256.	2.6	6
509	Effects of Cryostabilizers, Low Temperature, and Freezing on the Kinetics of the Pectin Methylesterase-Catalyzed De-esterification of Pectin. Journal of Agricultural and Food Chemistry, 2005, 53, 2282-2288.	5.2	6
510	Moisture diffusivities for bran and endosperm during soaking of longâ€grain brown rice. International Journal of Food Science and Technology, 1988, 23, 385-390.	2.7	6
511	Localization of Mycobacterium avium subspecies paratuberculosis in artificially inoculated milk and colostrum by fractionation. Journal of Dairy Science, 2010, 93, 4722-4729.	3.4	6
512	The effect of exogenous enzymes and mechanical treatment on mango purée: Effect on the molecular properties of pectic substances. Food Hydrocolloids, 2015, 50, 193-202.	10.7	6
513	Kinetics of drosopterin release as indicator pigment for heat-induced color changes of brown shrimp (Crangon crangon). Food Chemistry, 2018, 254, 359-366.	8.2	6
514	Carotenoid profile and basic structural indicators of native Peruvian chili peppers. European Food Research and Technology, 2019, 245, 717-732.	3.3	6
515	Simultaneous use of low methylesterified citrus pectin and EDTA as antioxidants in linseed/sunflower oil-in-water emulsions. Food Hydrocolloids, 2020, 100, 105386.	10.7	6
516	Mechanical Disintegration and Particle Size Sieving of Chondrus crispus (Irish Moss) Gametophytes and Their Effect on Carrageenan and Phycoerythrin Extraction. Foods, 2021, 10, 2928.	4.3	6
517	The role of mechanical collapse by cryogenic ball milling on the effect of high-pressure homogenization on the microstructural and texturizing properties of partially pectin-depleted tomato cell wall material. Food Research International, 2022, 155, 111033.	6.2	6
518	Inverse Superposition for Calculating Food Product Temperatures during In-container Thermal Processing. Journal of Food Science, 1997, 62, 220-224.	3.1	5
519	Evaluation of model parameter accuracy by using joint confidence regions: application to low complexity neural networks to describe enzyme inactivation. Mathematics and Computers in Simulation, 1998, 48, 53-64.	4.4	5
520	Development of a Novel Methodology To Validate Optimal Sterilization Conditions for Maximizing the Texture Quality of White Beans in Glass Jars. Biotechnology Progress, 1999, 15, 565-572.	2.6	5
521	Experimental and numerical analysis of an apparatus to apply controlled shear/elongation in fluid flows. Chemical Engineering Science, 2014, 113, 88-94.	3.8	5
522	RELATIONSHIP BETWEEN TEXTURE ANALYSIS AND TEXTURE ATTRIBUTES DURING POSTHARVEST SOFTENING OF 'JONAGOLD' AND 'KANZI' APPLES. Acta Horticulturae, 2015, , 279-284.	0.2	5

#	Article	IF	CITATIONS
523	Changes in \hat{I}^2 -Carotene During Processing of Carrots. , 2015, , 11-16.		5
524	Enhanced electrostatic interactions in tomato cell suspensions. Food Hydrocolloids, 2015, 43, 442-450.	10.7	5
525	The effect of exogenous enzymes and mechanical treatment on mango purée: Microscopic, mesoscopic, and macroscopic evaluation. Innovative Food Science and Emerging Technologies, 2016, 33, 438-449.	5.6	5
526	Effect of cultivar, pasteurization and storage on the volatile and taste compounds of strawberry puree. LWT - Food Science and Technology, 2021, 150, 112007.	5.2	5
527	Microstructural and Texturizing Properties of Partially Pectin-Depleted Cell Wall Material: The Role of Botanical Origin and High-Pressure Homogenization. Foods, 2021, 10, 2644.	4.3	5
528	An integrated kinetic and polymer science approach to investigate the textural stability of red kidney beans during post-harvest storage and subsequent cooking. Food Research International, 2022, 154, 110988.	6.2	5
529	Convenience of immobilizedBacillus licheniformis α-amylase as time—temperature-integrator (TTI). Journal of Chemical Technology and Biotechnology, 1994, 59, 193-199.	3.2	4
530	Modeling the Kinetics of the Pectin Methylesterase Catalyzed De-esterfication of Pectin in Frozen Systems. Biotechnology Progress, 2008, 20, 480-490.	2.6	4
531	Novel methods to optimise the nutritional and sensory quality of in-pack processed fish products. , 2008, , 382-402.		4
532	Can qualitatively similar temperature-histories be obtained in different pilot HP units?. Innovative Food Science and Emerging Technologies, 2011, 12, 226-234.	5.6	4
533	Effect of postharvest storage on potato (Solanum tuberosum L.) texture after pulsed electric field and thermal treatments. Innovative Food Science and Emerging Technologies, 2021, 74, 102826.	5.6	4
534	Calcium transport and phytate hydrolysis during chemical hardening of common bean seeds. Food Research International, 2022, 156, 111315.	6.2	4
535	Temperature distribution analysis of a water cascading retort in rotary and static modes. International Journal of Food Science and Technology, 2001, 36, 551-562.	2.7	3
536	Thermal Inactivation kinetics of acid phosphatase (ACP) in cod (Gadus morhua). European Food Research and Technology, 2006, 224, 315-320.	3.3	3
537	Development of an immunological toolbox to detect endogenous and exogenous pectin methylesterase in plant-based food products. Food Research International, 2011, 44, 931-939.	6.2	3
538	Recombinant kiwi pectin methylesterase inhibitor: Purification and characterization of the interaction with plant pectin methylesterase during thermal and high-pressure processing. Innovative Food Science and Emerging Technologies, 2015, 29, 295-301.	5.6	3
539	High-Pressure Processing Uniformity. Food Engineering Series, 2016, , 253-268.	0.7	3
540	Effect of overall charge and local charge density of pectin on the structure and thermal stability of lysozyme. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6271-6286.	3.6	3

#	Article	IF	CITATIONS
541	The moisture plasticizing effect on enzyme-catalyzed reactions in model and real systems in view of legume ageing and their hard to cook development. Journal of Food Engineering, 2022, 314, 110781.	5.2	3
542	Effects of High Pressure on Water-Ice Transitions in Foods. Food Engineering Series, 2001, , 215-248.	0.7	3
543	Targeted pectin depletion enhances the potential of high-pressure homogenization to increase the network forming potential of tomato cell wall material. Food Hydrocolloids, 2022, 130, 107688.	10.7	3
544	The rehydration attributes and quality characteristics of â€~Quick-cooking' dehydrated beans: Implications of glass transition on storage stability. Food Research International, 2022, 157, 111377.	6.2	3
545	Kinetics of phytate hydrolysis during storage of red kidney beans and the implication in hard-to-cook development. Food Research International, 2022, 159, 111581.	6.2	3
546	The effect of pressure processing on food quality related enzymes: from kinetic information to process engineering. Progress in Biotechnology, 2002, 19, 517-524.	0.2	2
547	High pressure processing to optimise the quality of in-pack processed fruit and vegetables. , 2008, , 338-357.		2
548	Immunological toolbox available for in situ exploration of pectic homogalacturonan and its modifying enzymes in fruits and vegetables and their derived food products. Innovative Food Science and Emerging Technologies, 2012, 15, 72-80.	5.6	2
549	Can Food Processing Enhance Cancer Protection?. Nutrition Today, 2014, 49, 230-234.	1.0	2
550	Acidification of Strawberry Puree Affects Color and Volatile Characteristics during Storage. ACS Food Science & Technology, 2021, 1, 1897-1908.	2.7	2
551	Enzyme stability under high pressure and temperature. Progress in Biotechnology, 1996, , 203-208.	0.2	1
552	Relative importance and interactions of furan precursors in sterilised, vegetable-based food systems. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 33, 1-14.	2.3	1
553	Investigating the role of the different molar mass fractions of a pectin rich extract from onion towards its emulsifying and emulsion stabilizing potential. Food Hydrocolloids, 2021, 117, 106735.	10.7	1
554	Effect of pulsed electric field, mild thermal pretreatment and calcium on texture changes of potato (Solanum tuberosum L.) during subsequent cooking. Innovative Food Science and Emerging Technologies, 2021, 74, 102830.	5.6	1
555	Inactivation of Enzymes. , 2002, , .		1
556	Kinetics of lipoxygenase inactivation in soybean and green beans. Progress in Biotechnology, 2002, , 199-204.	0.2	0
557	Time—Temperature Integrators (TTIs): Kinetic. , 2010, , 1726-1730.		0
558	Response to a letter to the editor by D. Lindsay, R. Robertson and K. Jordan. International Dairy Journal, 2011, 21, 510-512.	3.0	0

#	Article	IF	CITATIONS
559	Effect of Enzymes on Serum and Particle Properties of Carrot Cell Suspensions. Food Biophysics, 2015, 10, 428-438.	3.0	0
560	Comment on â€To climb or not to climb? Balancing stakeholder priorities at an iconic national park' by Erica Wilson, Noah Nielsen, Pascal Scherrer, Rodney W. Caldicott, Brent Moyle & Betty Weiler. Journal of Ecotourism, 0, , 1-3.	2.9	0