Zhaofu Fei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4224860/publications.pdf

Version: 2024-02-01

218677 206112 2,714 48 26 48 h-index citations g-index papers 49 49 49 4078 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Chemistry of the Passivation Mechanism of Perovskite Films with Ionic Liquids. Inorganic Chemistry, 2022, 61, 5010-5016.	4.0	12
2	Halide exchange in the passivation of perovskite solar cells with functionalized ionic liquids. Cell Reports Physical Science, 2022, 3, 100848.	5.6	9
3	Lignin First: Confirming the Role of the Metal Catalyst in Reductive Fractionation. Jacs Au, 2021, 1, 729-733.	7.9	28
4	Engineering long-term stability into perovskite solar cells via application of a multi-functional TFSI-based ionic liquid. Cell Reports Physical Science, 2021, 2, 100475.	5.6	25
5	Boosting hydrogen production via urea electrolysis on anÂamorphous nickel phosphide/graphene hybrid structure. Journal of Materials Science, 2021, 56, 17709-17720.	3.7	21
6	Recent advances in graphite carbon nitride-based nanocomposites: structure, antibacterial properties and synergies. Nanoscale Advances, 2021, 3, 3708-3729.	4.6	35
7	Efficient Solid-State Electrolytes Based on Aryl-Modified Imidazolium Ionic Crystals for Quantum Dot-Sensitized Solar Cells. ACS Applied Energy Materials, 2021, 4, 10739-10747.	5.1	2
8	Nitrogenâ€Incorporated Cobalt Sulfide/Graphene Hybrid Catalysts for Overall Water Splitting. ChemSusChem, 2020, 13, 5112-5118.	6.8	48
9	Liquid Nitrogen-Mediated Thermal Shock for Instantaneous Detachment of Multi-walled Carbon Nanotube Films from Substrates and Their Application in Supercapacitors. ACS Applied Nano Materials, 2020, 3, 11581-11586.	5.0	1
10	A TiO ₂ /Nb ₂ O ₅ Â <i>n</i> H ₂ O heterojunction catalyst for conversion of glucose into 5-hydroxymethylfurfural in water. Catalysis Science and Technology, 2020, 10, 7857-7864.	4.1	7
11	An Efficient Approach to Fabricate Airâ€Stable Perovskite Solar Cells via Addition of a Selfâ€Polymerizing lonic Liquid. Advanced Materials, 2020, 32, e2003801.	21.0	84
12	CO ₂ Methanation via Amino Alcohol Relay Molecules Employing a Ruthenium Nanoparticle/Metal Organic Framework Catalyst. Angewandte Chemie - International Edition, 2020, 59, 16371-16375.	13.8	21
13	CO 2 Methanation via Amino Alcohol Relay Molecules Employing a Ruthenium Nanoparticle/Metal Organic Framework Catalyst. Angewandte Chemie, 2020, 132, 16513.	2.0	7
14	Transformation of Glucose to 5-Hydroxymethylfurfural Over Regenerated Cellulose Supported Nb2O5·nH2O in Aqueous Solution. Catalysis Letters, 2020, 150, 2599-2606.	2.6	11
15	Acceptorless dehydrogenation and hydrogenation of N- and O-containing compounds on Pd ₃ Au ₁ (111) facets. Science Advances, 2020, 6, .	10.3	31
16	Selective Acceptorless Dehydrogenation of Primary Amines to Imines by Core–Shell Cobalt Nanoparticles. Angewandte Chemie, 2020, 132, 7571-7577.	2.0	6
17	Selective Acceptorless Dehydrogenation of Primary Amines to Imines by Core–Shell Cobalt Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 7501-7507.	13.8	37
18	Metalâ€Sulfide Catalysts Derived from Lignosulfonate and their Efficient Use in Hydrogenolysis. ChemSusChem, 2019, 12, 3271-3277.	6.8	11

#	Article	IF	CITATIONS
19	Oxidative cleavage of \hat{l}^2 -O-4 bonds in lignin model compounds with a single-atom Co catalyst. Green Chemistry, 2019, 21, 1974-1981.	9.0	65
20	Retarding Thermal Degradation in Hybrid Perovskites by Ionic Liquid Additives. Advanced Functional Materials, 2019, 29, 1902021.	14.9	76
21	Auto-passivation of crystal defects in hybrid imidazolium/methylammonium lead iodide films by fumigation with methylamine affords high efficiency perovskite solar cells. Nano Energy, 2019, 58, 105-111.	16.0	78
22	Multi-layered tumor-targeting photothermal-doxorubicin releasing nanotubes eradicate tumors <i>in vivo</i> with negligible systemic toxicity. Nanoscale, 2018, 10, 8536-8546.	5.6	26
23	Oxazolium Iodide Modified Perovskites for Solar Cell Fabrication. ChemPlusChem, 2018, 83, 279-284.	2.8	10
24	Influence of the Anion on the Oxidation of 5â€Hydroxymethylfurfural by Using Ionicâ€Polymerâ€Supported Platinum Nanoparticle Catalysts. ChemPlusChem, 2018, 83, 19-23.	2.8	27
25	Ionic liquid containing electron-rich, porous polyphosphazene nanoreactors catalyze the transformation of CO ₂ to carbonates. Journal of Materials Chemistry A, 2018, 6, 20916-20925.	10.3	16
26	Areπ-πInteractions in Ionic Liquids Related to Conductivities?. Helvetica Chimica Acta, 2018, 101, e1800137.	1.6	1
27	Chemoselective reduction of heteroarenes with a reduced graphene oxide supported rhodium nanoparticle catalyst. Catalysis Science and Technology, 2018, 8, 5091-5097.	4.1	25
28	On the origin of the synergy between the Pt nanoparticles and MnO2 nanosheets in Wonton-like 3D nanozyme oxidase mimics. Biosensors and Bioelectronics, 2018, 121, 159-165.	10.1	90
29	Polyimidazolium Salts: Robust Catalysts for the Cycloaddition of Carbon Dioxide into Carbonates in Solventâ€Free Conditions. ChemSusChem, 2017, 10, 2728-2735.	6.8	53
30	Benzimidazolium salt-based solid-state electrolytes afford efficient quantum-dot sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 13526-13534.	10.3	23
31	An efficient Pt nanoparticle–ionic liquid system for the hydrodeoxygenation of bio-derived phenols under mild conditions. Green Chemistry, 2017, 19, 5435-5441.	9.0	27
32	A Strategy to Produce High Efficiency, High Stability Perovskite Solar Cells Using Functionalized Ionic Liquidâ€Dopants. Advanced Materials, 2017, 29, 1702157.	21.0	115
33	MnO 2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosensors and Bioelectronics, 2017, 90, 69-74.	10.1	309
34	Synthesis of Crossâ€linked Ionic Poly(styrenes) and their Application as Catalysts for the Synthesis of Carbonates from CO ₂ and Epoxides. ChemPlusChem, 2017, 82, 144-151.	2.8	18
35	Direct Conversion of Mono―and Polysaccharides into 5â€Hydroxymethylfurfural Using Ionic‣iquid Mixtures. ChemSusChem, 2016, 9, 2089-2096.	6.8	49
36	Functionalized Ionic (Poly)Styrenes and their Application as Catalysts in the Cycloaddition of <scp>CO</scp> ₂ to Epoxides. Helvetica Chimica Acta, 2016, 99, 821-829.	1.6	12

ZHAOFU FEI

#	Article	IF	CITATION
37	Application of Ionic Liquids in the Downstream Processing of Lignocellulosic Biomass. Chimia, 2015, 69, 592.	0.6	26
38	Quantification of Conventional and Nonconventional Charge-Assisted Hydrogen Bonds in the Condensed and Gas Phases. Journal of Physical Chemistry Letters, 2015, 6, 4431-4436.	4.6	39
39	Enhanced Conversion of Carbohydrates to the Platform Chemical 5â€Hydroxymethylfurfural Using Designer Ionic Liquids. ChemSusChem, 2014, 7, 1647-1654.	6.8	65
40	A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions. Journal of Catalysis, 2014, 315, 67-74.	6.2	224
41	How Strong Is Hydrogen Bonding in Ionic Liquids? Combined X-ray Crystallographic, Infrared/Raman Spectroscopic, and Density Functional Theory Study. Journal of Physical Chemistry B, 2013, 117, 9094-9105.	2.6	130
42	The making of iLiquids – the chemist's equivalent of the iPhone. Chemical Communications, 2013, 49, 2594.	4.1	32
43	Gold Nanoparticles Grown on Ionic Liquidâ€Functionalized Singleâ€Walled Carbon Nanotubes: New Materials for Photothermal Therapy. Chemistry - A European Journal, 2012, 18, 13314-13319.	3.3	31
44	Coordination chemistry on the surface of single-walled carbon nanotubes. Inorganica Chimica Acta, 2010, 363, 3926-3931.	2.4	11
45	A Facile Strategy for Preparation of Fluorescent SWNT Complexes with High Quantum Yields Based on Ion Exchange. Advanced Functional Materials, 2008, 18, 857-864.	14.9	34
46	A Supercooled Imidazolium Iodide Ionic Liquid as a Low-Viscosity Electrolyte for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2006, 45, 10407-10409.	4.0	104
47	From Dysfunction to Bis-function: On the Design and Applications of Functionalised Ionic Liquids. Chemistry - A European Journal, 2006, 12, 2122-2130.	3.3	372
48	Synthesis and Characterization of Ionic Liquids Incorporating the Nitrile Functionality. Inorganic Chemistry, 2004, 43, 2197-2205.	4.0	230