Sidi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4224627/publications.pdf

Version: 2024-02-01

		172457	197818
50	8,005	29	49
papers	citations	h-index	g-index
60	60	60	10.00
69	69	69	12696
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Metaviromic identification of discriminative genomic features in SARS-CoV-2 using machine learning. Patterns, 2022, 3, 100407.	5.9	4
2	High-content CRISPR screening. Nature Reviews Methods Primers, 2022, 2, .	21.2	155
3	High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Science Immunology, 2022, 7, .	11.9	28
4	Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. Nature Communications, 2022, 13, 1638.	12.8	11
5	Tumor immunology CRISPR screening: present, past, and future. Trends in Cancer, 2022, 8, 210-225.	7.4	17
6	A genome-scale gain-of-function CRISPR screen in CD8 TÂcells identifies proline metabolism as a means to enhance CAR-T therapy. Cell Metabolism, 2022, 34, 595-614.e14.	16.2	70
7	Variant-specific vaccination induces systems immune responses and potent inÂvivo protection against SARS-CoV-2. Cell Reports Medicine, 2022, 3, 100634.	6.5	10
8	Development of an efficient reproducible cell-cell transmission assay for rapid quantification of SARS-CoV-2 Spike interaction with hACE2. Cell Reports Methods, 2022, , 100252.	2.9	1
9	Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2. Nature Communications, 2022, 13, .	12.8	40
10	Multiplexed LNP-mRNA vaccination against pathogenic coronavirus species. Cell Reports, 2022, 40, 111160.	6.4	9
11	A web tool for the design of prime-editing guide RNAs. Nature Biomedical Engineering, 2021, 5, 190-194.	22.5	85
12	Genomic analyses of new genes and their phenotypic effects reveal rapid evolution of essential functions in Drosophila development. PLoS Genetics, 2021, 17, e1009654.	3.5	27
13	The aging transcriptome and cellular landscape of the human lung in relation to SARS-CoV-2. Nature Communications, 2021, 12, 4.	12.8	63
14	High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells Science Immunology, 2021, , eabl5652.	11.9	6
15	Nonstructural Protein 1 of SARS-CoV-2 Is a Potent Pathogenicity Factor Redirecting Host Protein Synthesis Machinery toward Viral RNA. Molecular Cell, 2020, 80, 1055-1066.e6.	9.7	152
16	CRISPR-GEMM Pooled Mutagenic Screening Identifies KMT2D as a Major Modulator of Immune Checkpoint Blockade. Cancer Discovery, 2020, 10, 1912-1933.	9.4	71
17	Systematic Immunotherapy Target Discovery Using Genome-Scale InÂVivo CRISPR Screens in CD8ÂT Cells. Cell, 2019, 178, 1189-1204.e23.	28.9	189
18	Cooperative adaptation to therapy (CAT) confers resistance in heterogeneous non-small cell lung cancer. PLoS Computational Biology, 2019, 15, e1007278.	3.2	23

#	Article	IF	CITATIONS
19	In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nature Biotechnology, 2019, 37, 1302-1313.	17.5	123
20	Convergent Identification and Interrogation of Tumor-Intrinsic Factors that Modulate Cancer Immunity InÂVivo. Cell Systems, 2019, 8, 136-151.e7.	6.2	14
21	In vivo profiling of metastatic double knockouts through CRISPR–Cpf1 screens. Nature Methods, 2019, 16, 405-408.	19.0	52
22	One-step generation of modular CAR-T cells with AAV–Cpf1. Nature Methods, 2019, 16, 247-254.	19.0	101
23	Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity. Nature Immunology, 2019, 20, 1494-1505.	14.5	83
24	Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR–mediated direct in vivo screening. Science Advances, 2018, 4, eaao5508.	10.3	64
25	Cancer CRISPR Screens In Vivo. Trends in Cancer, 2018, 4, 349-358.	7.4	70
26	Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications. ACS Chemical Biology, 2018, 13, 347-356.	3.4	25
27	Programmable sequential mutagenesis by inducible Cpf1 crRNA array inversion. Nature Communications, 2018, 9, 1903.	12.8	9
28	Sno-derived RNAs are prevalent molecular markers of cancer immunity. Oncogene, 2018, 37, 6442-6462.	5.9	28
29	Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Cell Discovery, 2018, 4, 46.	6.7	45
30	AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nature Neuroscience, 2017, 20, 1329-1341.	14.8	179
31	Signal Transduction and Regulation: Insights into Evolution. BioMed Research International, 2016, 2016, 1-2.	1.9	0
32	Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids. Cell, 2015, 161, 1152-1163.	28.9	105
33	Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis. Cell, 2015, 160, 1246-1260.	28.9	746
34	Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, 2014, 32, 551-553.	17.5	823
35	Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature Biotechnology, 2014, 32, 670-676.	17.5	829
36	Global microRNA depletion suppresses tumor angiogenesis. Genes and Development, 2014, 28, 1054-1067.	5.9	66

#	Article	IF	Citations
37	CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature, 2014, 514, 380-384.	27.8	673
38	CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling. Cell, 2014, 159, 440-455.	28.9	1,566
39	New genes as drivers of phenotypic evolution. Nature Reviews Genetics, 2013, 14, 645-660.	16.3	313
40	New Gene Evolution: Little Did We Know. Annual Review of Genetics, 2013, 47, 307-333.	7.6	249
41	Reshaping of global gene expression networks and sex-biased gene expression by integration of a young gene. EMBO Journal, 2012, 31, 2798-2809.	7.8	44
42	Adaptive Evolution and the Birth of CTCF Binding Sites in the Drosophila Genome. PLoS Biology, 2012, 10, e1001420.	5.6	60
43	Frequent Recent Origination of Brain Genes Shaped the Evolution of Foraging Behavior in Drosophila. Cell Reports, 2012, 1, 118-132.	6.4	30
44	Roles of young serine-endopeptidase genes in survival and reproduction revealed rapid evolution of phenotypic effects at adult stages. Fly, 2011, 5, 345-351.	1.7	5
45	Highly Tissue Specific Expression of Sphinx Supports Its Male Courtship Related Role in Drosophila melanogaster. PLoS ONE, 2011, 6, e18853.	2.5	22
46	New Genes in <i>Drosophila</i> Quickly Become Essential. Science, 2010, 330, 1682-1685.	12.6	280
47	The evolution of courtship behaviors through the origination of a new gene in <i>Drosophila</i> Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7478-7483.	7.1	76
48	Biosynthesis, Purification, and Substrate Specificity of Severe Acute Respiratory Syndrome Coronavirus 3C-like Proteinase. Journal of Biological Chemistry, 2004, 279, 1637-1642.	3.4	280
49	RNA-dependent RNA polymerase gene sequence from foot-and-mouth disease virus in Hong Kong. Biochemical and Biophysical Research Communications, 2003, 308, 899-905.	2.1	7
50	Rapid modular CAR-T generation with CRISPR/Cpf1 and AAV systems. Protocol Exchange, 0, , .	0.3	1