List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4224512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trends in rice research: 2030 and beyond. Food and Energy Security, 2023, 12, .	4.3	42
2	Ancestral gene duplications in mosses characterized by integrated phylogenomic analyses. Journal of Systematics and Evolution, 2022, 60, 144-159.	3.1	19
3	Coordination of root auxin with the fungus <i>Piriformospora indica</i> and bacterium <i>Bacillus cereus</i> enhances rice rhizosheath formation under soil drying. ISME Journal, 2022, 16, 801-811.	9.8	22
4	PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis. Nature Communications, 2022, 13, 477.	12.8	81
5	In Situ Observation of Abscisic Distribution in Major Crop Species by Labeling. Methods in Molecular Biology, 2022, 2462, 155-162.	0.9	0
6	Analysis of gene expression in early seed germination of rice: landscape and genetic regulation. BMC Plant Biology, 2022, 22, 70.	3.6	10
7	The Coexistence of Flood and Drought Tolerance: An Opinion on the Development of Climate-Smart Rice. Frontiers in Plant Science, 2022, 13, 860802.	3.6	7
8	Identifying QTLs for Grain Size in a Colossal Grain Rice (Oryza sativa L.) Line, and Analysis of Additive Effects of QTLs. International Journal of Molecular Sciences, 2022, 23, 3526.	4.1	3
9	NLP2-NR Module Associated NO Is Involved in Regulating Seed Germination in Rice under Salt Stress. Plants, 2022, 11, 795.	3.5	13
10	Phylogeny and conservation of plant U2A/U2A', a core splicing component in U2 spliceosomal complex. Planta, 2022, 255, 25.	3.2	0
11	Identification of microRNAs regulating grain filling of rice inferior spikelets in response to moderate soil drying post-anthesis. Crop Journal, 2022, 10, 962-971.	5.2	16
12	Deficiency in flavonoid biosynthesis genes <i>CHS</i> , <i>CHI</i> , and <i>CHIL</i> alters rice flavonoid and lignin profiles. Plant Physiology, 2022, 188, 1993-2011.	4.8	18
13	Synergistic interaction between ABA and IAA due to moderate soil drying promotes grain filling of inferior spikelets in rice. Plant Journal, 2022, 109, 1457-1472.	5.7	20
14	The Absorption of Water from Humid Air by Grass Embryos during Germination. Plant Physiology, 2022, , .	4.8	0
15	Excessive nitrogen in field-grown rice suppresses grain filling of inferior spikelets by reducing the accumulation of cytokinin and auxin. Field Crops Research, 2022, 283, 108542.	5.1	14
16	MNSs-mediated N-glycan processing is essential for auxin homeostasis in Arabidopsis roots during alkaline response. IScience, 2022, 25, 104298.	4.1	0
17	Postâ€anthesis salineâ€alkali stress inhibits grain filling by promoting ethylene production and signal transduction. Food and Energy Security, 2022, 11,	4.3	5
18	Real-Time Fluorescence Imaging of the Abscisic Acid Receptor Allows Nondestructive Visualization of Plant Stress. ACS Applied Materials & amp; Interfaces, 2022, 14, 28489-28500.	8.0	7

#	Article	IF	CITATIONS
19	Moderate Soil Drying-Induced Alternative Splicing Provides a Potential Novel Approach for the Regulation of Grain Filling in Rice Inferior Spikelets. International Journal of Molecular Sciences, 2022, 23, 7770.	4.1	5
20	Alternate wetting and drying irrigation and phosphorus rates affect grain yield and quality and heavy metal accumulation in rice. Science of the Total Environment, 2021, 752, 141862.	8.0	35
21	PlantSPEAD: a web resource towards comparatively analysing stressâ€responsive expression of splicingâ€related proteins in plant. Plant Biotechnology Journal, 2021, 19, 227-229.	8.3	38
22	Comprehensive epigenome and transcriptome analysis of carbon reserve remobilization in indica and japonica rice stems under moderate soil drying. Journal of Experimental Botany, 2021, 72, 1384-1398.	4.8	3
23	<i>OsTPP1</i> regulates seed germination through the crosstalk with abscisic acid in rice. New Phytologist, 2021, 230, 1925-1939.	7.3	27
24	Low ABA concentration promotes root growth and hydrotropism through relief of ABA INSENSITIVE 1-mediated inhibition of plasma membrane H ⁺ -ATPase 2. Science Advances, 2021, 7, .	10.3	78
25	OsUEV1B, an Ubc enzyme variant protein, is required for phosphate homeostasis in rice. Plant Journal, 2021, 106, 706-719.	5.7	4
26	Transient ChIP-Seq for Genome-wide In Vivo DNA Binding Landscape. Trends in Plant Science, 2021, 26, 524-525.	8.8	5
27	Phylogenetic comparison and splice site conservation of eukaryotic U1 snRNP-specific U1-70K gene family. Scientific Reports, 2021, 11, 12760.	3.3	4
28	G protein \hat{I}^3 subunit qPE9-1 is involved in rice adaptation under elevated CO2 concentration by regulating leaf photosynthesis. Rice, 2021, 14, 67.	4.0	6
29	Rice G protein γ subunit <i>qPE9â€l </i> modulates root elongation for phosphorus uptake by involving 14â€3â€3 protein OsGF14b and plasma membrane H ⁺ â€ATPase. Plant Journal, 2021, 107, 1603-161	15.7	13
30	Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath. Journal of Integrative Plant Biology, 2021, 63, 1753-1774.	8.5	28
31	Use of NAD-Seq to Profile NAD+-Capped RNAs in Plants. Trends in Plant Science, 2021, 26, 871-872.	8.8	1
32	Global Survey of Alternative Splicing in Rice by Direct RNA Sequencing During Reproductive Development: Landscape and Genetic Regulation. Rice, 2021, 14, 75.	4.0	10
33	Phosphorus uptake is associated with the rhizosheath formation of mature cluster roots in white lupin under soil drying and phosphorus deficiency. Plant Physiology and Biochemistry, 2021, 166, 531-539.	5.8	17
34	Effect of Alternate Wetting and Drying Irrigation on the Nutritional Qualities of Milled Rice. Frontiers in Plant Science, 2021, 12, 721160.	3.6	6
35	Nitrogen formâ€mediated ethylene signal regulates rootâ€ŧoâ€shoot K ⁺ translocation via <i><scp>NRT1</scp>.5</i> . Plant, Cell and Environment, 2021, 44, 3806-3818.	5.7	17
36	Phylogenetic Comparison and Splicing Analysis of the U1 snRNP-specific Protein U1C in Eukaryotes. Frontiers in Molecular Biosciences, 2021, 8, 696319.	3.5	1

#	Article	IF	CITATIONS
37	Identification of ABC transporter G subfamily in white lupin and functional characterization of L.albABGC29 in phosphorus use. BMC Genomics, 2021, 22, 723.	2.8	13
38	Comparative transcriptome analysis of coleorhiza development in japonica and Indica rice. BMC Plant Biology, 2021, 21, 514.	3.6	7
39	Transcriptome changes in seeds during coleorhiza hair formation in rice. Crop Journal, 2021, , .	5.2	2
40	Back Cover Image. Plant, Cell and Environment, 2021, 44, ii.	5.7	0
41	Comprehensive Transcriptome and Metabolic Profiling of Petal Color Development in Lycoris sprengeri. Frontiers in Plant Science, 2021, 12, 747131.	3.6	7
42	Abscisic acid is required for root elongation associated with Ca2+ influx in response to water stress. Plant Physiology and Biochemistry, 2021, 169, 127-137.	5.8	6
43	Tissueâ€specific Hiâ€C analyses of rice, foxtail millet and maize suggest nonâ€canonical function of plant chromatin domains. Journal of Integrative Plant Biology, 2020, 62, 201-217.	8.5	54
44	Regulation of gene expression involved in the remobilization of rice straw carbon reserves results from moderate soil drying during grain filling. Plant Journal, 2020, 101, 604-618.	5.7	29
45	Alternative splicing is a Sorghum bicolor defense response to fungal infection. Planta, 2020, 251, 14.	3.2	18
46	Comprehensive transcriptome analysis of faba bean in response to vernalization. Planta, 2020, 251, 22.	3.2	10
47	Full-Length Transcript-Based Proteogenomics of Rice Improves Its Genome and Proteome Annotation. Plant Physiology, 2020, 182, 1510-1526.	4.8	53
48	Light-Dark Modulates Root Hydrotropism Associated with Gravitropism by Involving Amyloplast Response in Arabidopsis. Cell Reports, 2020, 32, 108198.	6.4	17
49	Transcriptomic analysis of photosynthesisâ€related genes regulated by alternate wetting and drying irrigation in flag leaves of rice. Food and Energy Security, 2020, 9, e221.	4.3	14
50	Response of brassinosteroids to nitrogen rates and their regulation on rice spikelet degeneration during meiosis. Food and Energy Security, 2020, 9, e201.	4.3	13
51	Hydrogen sulphide alleviates iron deficiency by promoting iron availability and plant hormone levels in Glycine max seedlings. BMC Plant Biology, 2020, 20, 383.	3.6	14
52	Jasmonates alleviate spikeletâ€opening impairment caused by high temperature stress during anthesis of photoâ€thermoâ€sensitive genic male sterile rice lines. Food and Energy Security, 2020, 9, e233.	4.3	21
53	Comparative analysis reveals gravity is involved in the MIZ1-regulated root hydrotropism. Journal of Experimental Botany, 2020, 71, 7316-7330.	4.8	12
54	Systematic characterization of the branch point binding protein, splicing factor 1, gene family in plant development and stress responses. BMC Plant Biology, 2020, 20, 379.	3.6	5

#	Article	IF	CITATIONS
55	Flavonoids are indispensable for complete male fertility in rice. Journal of Experimental Botany, 2020, 71, 4715-4728.	4.8	48
56	Emerging Functions of Plant Serine/Arginine-Rich (SR) Proteins: Lessons from Animals. Critical Reviews in Plant Sciences, 2020, 39, 173-194.	5.7	19
57	Frequent alternate wetting and drying irrigation mitigates the effect of low phosphorus on rice grain yield in a 4â€year field trial by increasing soil phosphorus release and rice root growth. Food and Energy Security, 2020, 9, e206.	4.3	21
58	Spermidine Enhanced Free Polyamine Levels and Expression of Polyamine Biosynthesis Enzyme Gene in Rice Spikelets under Heat Tolerance before Heading. Scientific Reports, 2020, 10, 8976.	3.3	19
59	Analysis of Global Methylome and Gene Expression during Carbon Reserve Mobilization in Stems under Soil Drying. Plant Physiology, 2020, 183, 1809-1824.	4.8	21
60	The change of gravity vector induces short-term phosphoproteomic alterations in Arabidopsis. Journal of Proteomics, 2020, 218, 103720.	2.4	4
61	Hydrogen sulfide is a crucial element of the antioxidant defense system in Glycine max–Sinorhizobium fredii symbiotic root nodules. Plant and Soil, 2020, 449, 209-231.	3.7	21
62	Genome-wide transcriptome analysis of roots in two rice varieties in response to alternate wetting and drying irrigation. Crop Journal, 2020, 8, 586-601.	5.2	11
63	Root-Bacteria Associations Boost Rhizosheath Formation in Moderately Dry Soil through Ethylene Responses. Plant Physiology, 2020, 183, 780-792.	4.8	37
64	Phylogenetic comparison of 5′ splice site determination in central spliceosomal proteins of the <i>U1â€70K</i> gene family, in response to developmental cues and stress conditions. Plant Journal, 2020, 103, 357-378.	5.7	30
65	Expression profile of the carbon reserve remobilization from the source to sink in rice in response to soil drying during grain filling. Food and Energy Security, 2020, 9, e204.	4.3	11
66	Carbohydrate, hormone and enzyme regulations of rice grain filling under post-anthesis soil drying. Environmental and Experimental Botany, 2020, 178, 104165.	4.2	27
67	Alternative splicing and its regulatory role in woody plants. Tree Physiology, 2020, 40, 1475-1486.	3.1	31
68	Hydrogen sulfide and rhizobia synergistically regulate nitrogen (N) assimilation and remobilization during N deficiencyâ€induced senescence in soybean. Plant, Cell and Environment, 2020, 43, 1130-1147.	5.7	28
69	MAP3KÎ,1 is Involved in Abscisic Acid Signaling in Drought Tolerance and Seed Germination in Arabidopsis. Journal of Plant Biology, 2020, 63, 11-21.	2.1	5
70	Moderate water stress in rice induces rhizosheath formation associated with abscisic acid and auxin responses. Journal of Experimental Botany, 2020, 71, 2740-2751.	4.8	35
71	Abscisic Acid Is Required for Root Elongation Associated With Ca2+ Influx in Response to Water Stress. Frontiers in Plant Science, 2020, 11, 332.	3.6	5
72	Combining alternate wetting and drying irrigation with reduced phosphorus fertilizer application reduces water use and promotes phosphorus use efficiency without yield loss in rice plants. Agricultural Water Management, 2019, 223, 105686.	5.6	41

#	Article	IF	CITATIONS
73	Hydrogen Sulfide Promotes Nodulation and Nitrogen Fixation in Soybean–Rhizobia Symbiotic System. Molecular Plant-Microbe Interactions, 2019, 32, 972-985.	2.6	42
74	Comparative metabolite profiling of two switchgrass ecotypes reveals differences in drought stress responses and rhizosheath weight. Planta, 2019, 250, 1355-1369.	3.2	31
75	Role of brassinosteroids in rice spikelet differentiation and degeneration under soil-drying during panicle development. BMC Plant Biology, 2019, 19, 409.	3.6	35
76	SWATH-MS-facilitated proteomic profiling of fruit skin between Fuji apple and a red skin bud sport mutant. BMC Plant Biology, 2019, 19, 445.	3.6	23
77	Combining Irrigation Scheme and Phosphorous Application Levels for Grain Yield and Their Impacts on Rhizosphere Microbial Communities of Two Rice Varieties in a Field Trial. Journal of Agricultural and Food Chemistry, 2019, 67, 10577-10586.	5.2	10
78	Transcriptomic analysis of grain filling in rice inferior grains under moderate soil drying. Journal of Experimental Botany, 2019, 70, 1597-1611.	4.8	45
79	Abscisic Acid Regulates Auxin Distribution to Mediate Maize Lateral Root Development Under Salt Stress. Frontiers in Plant Science, 2019, 10, 716.	3.6	66
80	Chemical Modulation of Alternative Splicing for Molecular-Target Identification by Potential Genetic Control in Agrochemical Research. Journal of Agricultural and Food Chemistry, 2019, 67, 5072-5084.	5.2	8
81	Unravelling calcium-alleviated aluminium toxicity in Arabidopsis thaliana: Insights into regulatory mechanisms using proteomics. Journal of Proteomics, 2019, 199, 15-30.	2.4	21
82	Recruitment of specific flavonoid Bâ€ring hydroxylases for two independent biosynthesis pathways of flavoneâ€derived metabolites in grasses. New Phytologist, 2019, 223, 204-219.	7.3	38
83	Perception, transduction, and integration of nitrogen and phosphorus nutritional signals in the transcriptional regulatory network in plants. Journal of Experimental Botany, 2019, 70, 3709-3717.	4.8	34
84	OsProT1 and OsProT3 Function to Mediate Proline- and γ-aminobutyric acid-specific Transport in Yeast and are Differentially Expressed in Rice (Oryza sativa L.). Rice, 2019, 12, 79.	4.0	10
85	Rhizosheath formation and involvement in foxtail millet (<i>Setaria italica</i>) root growth under drought stress. Journal of Integrative Plant Biology, 2019, 61, 449-462.	8.5	58
86	Overexpression of rice aquaporin <i>OsPIP1;2</i> improves yield by enhancing mesophyll CO2 conductance and phloem sucrose transport. Journal of Experimental Botany, 2019, 70, 671-681.	4.8	60
87	Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields. Soil Biology and Biochemistry, 2019, 129, 191-200.	8.8	59
88	Brassinosteroids function in spikelet differentiation and degeneration in rice. Journal of Integrative Plant Biology, 2019, 61, 943-963.	8.5	34
89	Involvement of OsGF14b Adaptation in the Drought Resistance of Rice Plants. Rice, 2019, 12, 82.	4.0	24
90	Sodium hydrosulfide modifies the nutrient ratios of soybean (<i>GlycineÂmax</i>) under iron deficiency. Journal of Plant Nutrition and Soil Science, 2018, 181, 305-315.	1.9	11

#	Article	IF	CITATIONS
91	Comparative Analysis of Arabidopsis Ecotypes Reveals a Role for Brassinosteroids in Root Hydrotropism. Plant Physiology, 2018, 176, 2720-2736.	4.8	46
92	Desiccation tolerance in bryophytes: the rehydration proteomes of Bryum argenteum provide insights into the resuscitation mechanism. Journal of Arid Land, 2018, 10, 152-167.	2.3	9
93	Preferential Geographic Distribution Pattern of Abiotic Stress Tolerant Rice. Rice, 2018, 11, 10.	4.0	21
94	Mechanism Enhancing Arabidopsis Resistance to Cadmium: The Role of NRT1.5 and Proton Pump. Frontiers in Plant Science, 2018, 9, 1892.	3.6	24
95	Suppression of OsMDHAR4 enhances heat tolerance by mediating H2O2-induced stomatal closure in rice plants. Rice, 2018, 11, 38.	4.0	40
96	A semi-dominant mutation in a CC-NB-LRR-type protein leads to a short-root phenotype in rice. Rice, 2018, 11, 54.	4.0	7
97	Identification, Classification, and Functional Analysis of AP2/ERF Family Genes in the Desert Moss Bryum argenteum. International Journal of Molecular Sciences, 2018, 19, 3637.	4.1	21
98	Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nature Plants, 2018, 4, 784-791.	9.3	256
99	Evolution by duplication: paleopolyploidy events in plants reconstructed by deciphering the evolutionary history of VOZ transcription factors. BMC Plant Biology, 2018, 18, 256.	3.6	13
100	NRT1.1-Related NH ₄ ⁺ Toxicity Is Associated with a Disturbed Balance between NH ₄ ⁺ Uptake and Assimilation. Plant Physiology, 2018, 178, 1473-1488.	4.8	72
101	On the attribution of changing crop evapotranspiration in arid regions using four methods. Journal of Hydrology, 2018, 563, 576-585.	5.4	15
102	SWATH-MS quantitative proteomic investigation of nitrogen starvation in Arabidopsis reveals new aspects of plant nitrogen stress responses. Journal of Proteomics, 2018, 187, 161-170.	2.4	32
103	Rhizobium inoculation enhances copper tolerance by affecting copper uptake and regulating the ascorbate-glutathione cycle and phytochelatin biosynthesis-related gene expression in Medicago sativa seedlings. Ecotoxicology and Environmental Safety, 2018, 162, 312-323.	6.0	46
104	Comparison on physiological adaptation and phosphorus use efficiency of upland rice and lowland rice in and lowland rice under alternate wetting and drying irrigation. Plant Growth Regulation, 2018, 86, 195-210.	3.4	37
105	Impairment of FtsHi5 Function Affects Cellular Redox Balance and Photorespiratory Metabolism in Arabidopsis. Plant and Cell Physiology, 2018, 59, 2526-2535.	3.1	14
106	Calciumâ€dependent protein kinase <scp>CPK</scp> 28 targets the methionine adenosyltransferases for degradation by the 26S proteasome and affects ethylene biosynthesis and lignin deposition in Arabidopsis. Plant Journal, 2017, 90, 304-318.	5.7	34
107	Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. Plant Journal, 2017, 91, 518-533.	5.7	156
108	Regulation of Gene Expression in the Remobilization of Carbon Reserves in Rice Stems During Grain Filling. Plant and Cell Physiology, 2017, 58, 1391-1404.	3.1	35

#	Article	IF	CITATIONS
109	Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation. Journal of Integrative Agriculture, 2017, 16, 1028-1043.	3.5	62
110	Arabidopsis plasma membrane H+-ATPase genes AHA2 and AHA7 have distinct and overlapping roles in the modulation of root tip H+ efflux in response to low-phosphorus stress. Journal of Experimental Botany, 2017, 68, 1731-1741.	4.8	75
111	Comparison of Structural and Functional Properties of Wheat Starch Under Different Soil Drought Conditions. Scientific Reports, 2017, 7, 12312.	3.3	34
112	Desiccation tolerance in bryophytes: The dehydration and rehydration transcriptomes in the desiccation-tolerant bryophyte Bryum argenteum. Scientific Reports, 2017, 7, 7571.	3.3	50
113	A Phylogenetically Informed Comparison of GH1 Hydrolases between Arabidopsis and Rice Response to Stressors. Frontiers in Plant Science, 2017, 8, 350.	3.6	27
114	iTRAQ-based quantitative proteomic analysis in vernalization-treated faba bean (Vicia faba L.). PLoS ONE, 2017, 12, e0187436.	2.5	3
115	SWATH-MS Quantitative Analysis of Proteins in the Rice Inferior and Superior Spikelets during Grain Filling. Frontiers in Plant Science, 2016, 7, 1926.	3.6	15
116	Agronomic and Physiological Performance of Rice under Integrative Crop Management. Agronomy Journal, 2016, 108, 117-128.	1.8	35
117	SWATH-MS Quantitative Proteomic Investigation Reveals a Role of Jasmonic Acid during Lead Response in <i>Arabidopsis</i> . Journal of Proteome Research, 2016, 15, 3528-3539.	3.7	33
118	Flood and drought tolerance in rice: opposite butÂmayÂcoexist. Food and Energy Security, 2016, 5, 76-88.	4.3	52
119	Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions. Journal of Hydrology, 2016, 543, 450-461.	5.4	77
120	Expression of proteins in superior and inferior spikelets of rice during grain filling under different irrigation regimes. Proteomics, 2016, 16, 102-121.	2.2	28
121	<scp>EMPTY PERICARP</scp> 16 is required for mitochondrial <i>nad2</i> intron 4 <i>cis</i> â€splicing, complex I assembly and seed development in maize. Plant Journal, 2016, 85, 507-519.	5.7	97
122	Involvement of abscisic acid in fructan hydrolysis and starch biosynthesis in wheat under soil drying. Plant Growth Regulation, 2016, 80, 265-279.	3.4	15
123	Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Research, 2016, 193, 54-69.	5.1	201
124	Microbial Activity in Paddy Soil and Water-Use Efficiency of Rice as Affected by Irrigation Method and Nitrogen Level. Communications in Soil Science and Plant Analysis, 2016, 47, 19-31.	1.4	16
125	Alternate wetting and moderate drying increases rice yield and reduces methane emission in paddy field with wheat straw residue incorporation. Food and Energy Security, 2015, 4, 238-254.	4.3	71
126	A Key ABA Catabolic Gene, OsABA8ox3, Is Involved in Drought Stress Resistance in Rice. PLoS ONE, 2015, 10, e0116646.	2.5	88

#	Article	IF	CITATIONS
127	Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling. Planta, 2015, 241, 1091-1107.	3.2	87
128	AtDsPTP1 acts as a negative regulator in osmotic stress signalling during Arabidopsis seed germination and seedling establishment. Journal of Experimental Botany, 2015, 66, 1339-1353.	4.8	31
129	Disruption of the Arabidopsis Defense Regulator Genes SAG101, EDS1, and PAD4 Confers Enhanced Freezing Tolerance. Molecular Plant, 2015, 8, 1536-1549.	8.3	55
130	Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in <i>Arabidopsis</i> under salinity stress. Journal of Experimental Botany, 2015, 66, 5971-5981.	4.8	75
131	Unsaturation of Very-Long-Chain Ceramides Protects Plant from Hypoxia-Induced Damages by Modulating Ethylene Signaling in Arabidopsis. PLoS Genetics, 2015, 11, e1005143.	3.5	86
132	Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress. Journal of Experimental Botany, 2015, 66, 2271-2281.	4.8	58
133	Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa) Tj ETG	2q1_10.78	34314 rgBT /C
134	Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security. Journal of Experimental Botany, 2015, 66, 2253-2269.	4.8	242
135	<scp>C</scp> hina's food security is threatened by the unsustainable use of water resources in <scp>N</scp> orth and <scp>N</scp> orthwest <scp>C</scp> hina. Food and Energy Security, 2014, 3, 7-18.	4.3	62
136	Copper Suppresses Abscisic Acid Catabolism and Catalase Activity, and Inhibits Seed Germination of Rice. Plant and Cell Physiology, 2014, 55, 2008-2016.	3.1	41
137	Reprint of "Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant riceâ€. Field Crops Research, 2014, 165, 36-48.	5.1	34
138	Genome duplication improves rice root resistance to salt stress. Rice, 2014, 7, 15.	4.0	68
139	A coupled surface resistance model to estimate crop evapotranspiration in arid region of northwest China. Hydrological Processes, 2014, 28, 2312-2323.	2.6	34
140	Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crops Research, 2013, 154, 226-235.	5.1	153
141	The ammonium/nitrate ratio is an input signal in the temperatureâ€modulated, <i><scp>SNC</scp>1</i> â€mediated and <i><scp>EDS</scp>1</i> â€dependent autoimmunity of <i>nudt6â€2Ânudt7</i> . Plant Journal, 2013, 73, 262-275.	5.7	33
142	Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytologist, 2013, 197, 139-150.	7.3	237
143	Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. Journal of Experimental Botany, 2013, 64, 2523-2538.	4.8	103
144	Class III peroxidases are activated in proanthocyanidin-deficient Arabidopsis thaliana seeds. Annals of Botany, 2013, 111, 839-847.	2.9	22

#	Article	IF	CITATIONS
145	The Tomato 14-3-3 Protein TFT4 Modulates H+ Efflux, Basipetal Auxin Transport, and the PKS5-J3 Pathway in the Root Growth Response to Alkaline Stress Â. Plant Physiology, 2013, 163, 1817-1828.	4.8	66
146	An improved agar-plate method for studying root growth and response of Arabidopsis thaliana. Scientific Reports, 2013, 3, 1273.	3.3	91
147	Rayada specialty: the forgotten resource of elite features of rice. Rice, 2013, 6, 41.	4.0	12
148	An Improved Crop Management Increases Grain Yield and Nitrogen and Water Use Efficiency in Rice. Crop Science, 2013, 53, 271-284.	1.8	78
149	Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. Journal of Experimental Botany, 2012, 63, 215-227.	4.8	134
150	Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice. Plant Signaling and Behavior, 2012, 7, 563-565.	2.4	31
151	Modulation of Anti-Oxidation Ability by Proanthocyanidins during Germination of Arabidopsis thaliana Seeds. Molecular Plant, 2012, 5, 472-481.	8.3	49
152	Proanthocyanidins Inhibit Seed Germination by Maintaining a High Level of Abscisic Acid in <i>Arabidopsis thaliana</i> ^F . Journal of Integrative Plant Biology, 2012, 54, 663-673.	8.5	71
153	PIN2 is required for the adaptation of Arabidopsis roots to alkaline stress by modulating proton secretion. Journal of Experimental Botany, 2012, 63, 6105-6114.	4.8	92
154	Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. Journal of Experimental Botany, 2012, 63, 1809-1822.	4.8	181
155	ABA signal in rice under stress conditions. Rice, 2012, 5, 1.	4.0	215
156	Polyamine and ethylene interactions in grain filling of superior and inferior spikelets of rice. Plant Growth Regulation, 2012, 66, 215-228.	3.4	67
157	<i>TFT6</i> and <i>TFT7</i> , two different members of tomato 14â€3â€3 gene family, play distinct roles in plant adaption to low phosphorus stress. Plant, Cell and Environment, 2012, 35, 1393-1406.	5.7	66
158	POTENTIAL USE OF SALINE WATER FOR IRRIGATING SHELTERBELT PLANTS IN THE ARID REGION. Irrigation and Drainage, 2012, 61, 107-115.	1.7	6
159	Nitric Oxide Mediates Brassinosteroid-Induced ABA Biosynthesis Involved in Oxidative Stress Tolerance in Maize Leaves. Plant and Cell Physiology, 2011, 52, 181-192.	3.1	167
160	Modulation of the root-sourced ABA signal along its way to the shoot in Vitis ripariaxVitis labrusca under water deficit. Journal of Experimental Botany, 2011, 62, 1731-1741.	4.8	40
161	ABA Controls H2O2 Accumulation Through the Induction of OsCATB in Rice Leaves Under Water Stress. Plant and Cell Physiology, 2011, 52, 689-698.	3.1	182
162	Involvement of the abscisic acid catabolic gene <i>CYP707A2</i> in the glucoseâ€induced delay in seed germination and postâ€germination growth of <i>Arabidopsis</i> . Physiologia Plantarum, 2011, 143, 375-384.	5.2	34

#	Article	IF	CITATIONS
163	China's success in increasing per capita food production. Journal of Experimental Botany, 2011, 62, 3707-3711.	4.8	149
164	Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. Journal of Experimental Botany, 2011, 62, 3907-3916.	4.8	159
165	Biomass allocation and yield formation of cotton under partial rootzone irrigation in arid zone. Plant and Soil, 2010, 337, 413-423.	3.7	16
166	Grain-filling problem in â€~super' rice. Journal of Experimental Botany, 2010, 61, 1-5.	4.8	359
167	H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. Journal of Experimental Botany, 2010, 61, 2979-2990.	4.8	352
168	Glucose-Induced Delay of Seed Germination in Rice is Mediated by the Suppression of ABA Catabolism Rather Than an Enhancement of ABA Biosynthesis. Plant and Cell Physiology, 2009, 50, 644-651.	3.1	218
169	Alternate wetting and moderate soil drying increases grain yield and reduces cadmium accumulation in rice grains. Journal of the Science of Food and Agriculture, 2009, 89, 1728-1736.	3.5	92
170	Ethylene and ACC levels in developing grains are related to the poor appearance and milling quality of rice. Plant Growth Regulation, 2009, 58, 85-96.	3.4	29
171	Nitric oxideâ€induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytologist, 2009, 183, 1030-1042.	7.3	152
172	Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice. Plant Physiology and Biochemistry, 2009, 47, 195-204.	5.8	176
173	An Alternate Wetting and Moderate Soil Drying Regime Improves Root and Shoot Growth in Rice. Crop Science, 2009, 49, 2246-2260.	1.8	253
174	Effects of alternate partial root-zone irrigation on soil microorganism and maize growth. Plant and Soil, 2008, 302, 45-52.	3.7	49
175	Cross-talks between Ca2+/CaM and H2O2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress. Plant Growth Regulation, 2008, 55, 183-198.	3.4	41
176	Water use and yield responses of cotton to alternate partial root-zone drip irrigation in the arid area of north-west China. Irrigation Science, 2008, 26, 147-159.	2.8	93
177	Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta, 2008, 228, 137-149.	3.2	71
178	Growth and nutrient uptake of tea under different aluminium concentrations. Journal of the Science of Food and Agriculture, 2008, 88, 1582-1591.	3.5	63
179	Diurnal and seasonal variations of sap flow of <i>Caragana korshinskii</i> in the arid desert region of northâ€west China. Hydrological Processes, 2008, 22, 1197-1205.	2.6	38
180	AtMKK1 mediates ABAâ€induced <i>CAT1</i> expression and H ₂ O ₂ production via AtMPK6â€coupled signaling in Arabidopsis. Plant Journal, 2008, 54, 440-451.	5.7	374

#	Article	IF	CITATIONS
181	Postanthesis Moderate Wetting Drying Improves Both Quality and Quantity of Rice Yield. Agronomy Journal, 2008, 100, 726-734.	1.8	101
182	Xylem sap flows of irrigatedTamarix elongata Ledeb and the influence of environmental factors in the desert region of Northwest China. Hydrological Processes, 2007, 21, 1363-1369.	2.6	23
183	Nitric oxide induced by hydrogen peroxide mediates abscisic acidâ€induced activation of the mitogenâ€activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytologist, 2007, 175, 36-50.	7.3	353
184	Modulation of Root Signals in Relation to Stomatal Sensitivity to Rootâ€sourced Abscisic Acid in Droughtâ€affected Plants. Journal of Integrative Plant Biology, 2007, 49, 1410-1420.	8.5	30
185	Waterâ€5aving and High‥ielding Irrigation for Lowland Rice by Controlling Limiting Values of Soil Water Potential. Journal of Integrative Plant Biology, 2007, 49, 1445-1454.	8.5	136
186	Much Improved Water Use Efficiency of Rice under Nonâ€Flooded Mulching Cultivation. Journal of Integrative Plant Biology, 2007, 49, 1527-1534.	8.5	19
187	Growth and Major Nutrient Concentrations in Brassica campestris Supplied with Different NH4+/NO3?Ratios. Journal of Integrative Plant Biology, 2007, 49, 455-462.	8.5	29
188	Aerenchyma Formed Under Phosphorus Deficiency Contributes to the Reduced Root Hydraulic Conductivity in Maize Roots. Journal of Integrative Plant Biology, 2007, 49, 598-604.	8.5	59
189	Abscisic Acid and Ethylene Interact in Rice Spikelets in Response to Water Stress During Meiosis. Journal of Plant Growth Regulation, 2007, 26, 318-328.	5.1	73
190	Benefits of alternate partial root-zone irrigation on growth, water and nitrogen use efficiencies modified by fertilization and soil water status in maize. Plant and Soil, 2007, 295, 279-291.	3.7	81
191	Abscisic Acid is a Key Inducer of Hydrogen Peroxide Production in Leaves of Maize Plants Exposed to Water Stress. Plant and Cell Physiology, 2006, 47, 1484-1495.	3.1	105
192	Grain filling of cereals under soil drying. New Phytologist, 2006, 169, 223-236.	7.3	572
193	Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytologist, 2006, 171, 293-303.	7.3	169
194	Water Channels Are Involved in Stomatal Oscillations Encoded by Parameter-Specific Cytosolic Calcium Oscillations. Journal of Integrative Plant Biology, 2006, 48, 790-799.	8.5	11
195	Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. Journal of Experimental Botany, 2006, 58, 211-219.	4.8	100
196	The Regulator of G-Protein Signaling Proteins Involved in Sugar and Abscisic Acid Signaling in Arabidopsis Seed Germination. Plant Physiology, 2006, 140, 302-310.	4.8	117
197	Mitogen-Activated Protein Kinase Is Involved in Abscisic Acid-Induced Antioxidant Defense and Acts Downstream of Reactive Oxygen Species Production in Leaves of Maize Plants. Plant Physiology, 2006, 141, 475-487.	4.8	332
198	Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. Journal of Experimental Botany, 2006, 57, 149-160.	4.8	201

#	Article	IF	CITATIONS
199	Regulation Mechanisms of Stomatal Oscillation. Journal of Integrative Plant Biology, 2005, 47, 1159-1172.	8.5	25
200	Responses of canopy transpiration and canopy conductance of peach (Prunus persica) trees to alternate partial root zone drip irrigation. Hydrological Processes, 2005, 19, 2575-2590.	2.6	10
201	Response of Root Morphology to Nitrate Supply and its Contribution to Nitrogen Accumulation in Maize. Journal of Plant Nutrition, 2005, 27, 2189-2202.	1.9	108
202	Nitrogen Fertilization on Uptake of Soil Inorganic Phosphorus Fractions in the Wheat Root Zone. Soil Science Society of America Journal, 2004, 68, 1890-1895.	2.2	26
203	Response of Root Morphology to Nitrate Supply and its Contribution to Nitrogen Accumulation in Maize. Journal of Plant Nutrition, 2004, 27, 2189-2202.	1.9	13
204	Title is missing!. Plant and Soil, 2003, 254, 279-289.	3.7	45
205	Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regulation, 2003, 41, 185-195.	3.4	117
206	Transpiration coefficient and ratio of transpiration to evapotranspiration of pear tree (Pyrus) Tj ETQq0 0 0 rgBT 1165-1176.	Overlock 2.6	10 Tf 50 467 31
207	CO2Enrichment on Biomass Accumulation and Nitrogen Nutrition of Spring Wheat Under Different Soil Nitrogen and Water Status. Journal of Plant Nutrition, 2003, 26, 769-788.	1.9	9
208	Postanthesis Water Deficits Enhance Grain Filling in Two‣ine Hybrid Rice. Crop Science, 2003, 43, 2099-2108.	1.8	62
209	CARBOHYDRATE STORAGE AND UTILIZATION DURING GRAIN FILLING AS REGULATED BY NITROGEN APPLICATION IN TWO WHEAT CULTIVARS. Journal of Plant Nutrition, 2002, 25, 213-229.	1.9	26
210	Correlation of Cytokinin Levels in the Endosperms and Roots with Cell Number and Cell Division Activity during Endosperm Development in Rice. Annals of Botany, 2002, 90, 369-377.	2.9	200
211	Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany, 2002, 53, 2401-2410.	4.8	718
212	Carbon Remobilization and Grain Filling in Japonica/Indica Hybrid Rice Subjected to Postanthesis Water Deficits. Agronomy Journal, 2002, 94, 102.	1.8	36
213	Benefits of CO2 enrichment on crop plants are modified by soil water status. Plant and Soil, 2002, 238, 69-77.	3.7	68
214	Remobilization of carbon reserves in response to water deficit during grain filling of rice. Field Crops Research, 2001, 71, 47-55.	5.1	185
215	Effect of Abscisic Acid on Active Oxygen Species, Antioxidative Defence System and Oxidative Damage in Leaves of Maize Seedlings. Plant and Cell Physiology, 2001, 42, 1265-1273.	3.1	788
216	Hormonal Changes in the Grains of Rice Subjected to Water Stress during Grain Filling. Plant Physiology, 2001, 127, 315-323.	4.8	643

#	Article	IF	CITATIONS
217	Water Deficit–Induced Senescence and Its Relationship to the Remobilization of Preâ€Stored Carbon in Wheat during Grain Filling. Agronomy Journal, 2001, 93, 196-206.	1.8	230
218	Activities of starch hydrolytic enzymes and sucroseâ€phosphate synthase in the stems of rice subjected to water stress during grain filling. Journal of Experimental Botany, 2001, 52, 2169-2179.	4.8	169
219	Role of light in the response of PSII photochemistry to salt stress in the cyanobacterium Spirulina platensis. Journal of Experimental Botany, 2000, 51, 911-917.	4.8	36
220	Remobilization of Carbon Reserves Is Improved by Controlled Soilâ€Ðrying during Grain Filling of Wheat. Crop Science, 2000, 40, 1645-1655.	1.8	235
221	Stomatal closure is induced rather by prevailing xylem abscisic acid than by accumulated amount of xylem-derived abscisic acid. Physiologia Plantarum, 1999, 106, 268-275.	5.2	36
222	Title is missing!. Plant Growth Regulation, 1999, 29, 77-86.	3.4	36
223	Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. Journal of Experimental Botany, 1999, 50, 1199-1206.	4.8	272
224	Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. Journal of Experimental Botany, 1999, 50, 1199-1206.	4.8	48
225	Title is missing!. Plant Growth Regulation, 1997, 21, 43-49.	3.4	39
226	Effect of leaf water status and xylem pH on metabolism of xylem-transported abscisic acid. Plant Growth Regulation, 1997, 21, 51-58.	3.4	22
227	Anti-transpiration and anti-growth activities in the xylem sap from plants under different types of soil stress. New Phytologist, 1997, 137, 657-664.	7.3	13
228	Exudation rate and hydraulic conductivity of maize roots are enhanced by soil drying and abscisic acid treatment. New Phytologist, 1995, 131, 329-336.	7.3	67
229	Accumulation of ABA in maize roots in response to root severing. New Phytologist, 1994, 127, 309-314.	7.3	4