Ana Pocivavsek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4223598/publications.pdf

Version: 2024-02-01

44 papers 1,766

257450 24 h-index 39 g-index

45 all docs

45 docs citations

45 times ranked

2224 citing authors

#	Article	IF	CITATIONS
1	Estradiol influences adenosinergic signaling and nonrapid eye movement sleep need in adult female rats. Sleep, 2022, 45, .	1.1	5
2	0298 Kynurenic Acid Synthesis Inhibitor Promotes Enhanced Sleep Recovery Following Acute Sleep Deprivation in Adult Wistar Rats. Sleep, 2022, 45, A134-A134.	1.1	0
3	0197 Increased Brain Kynurenic Acid Elicits Sex-Dependent Abnormalities in NREM Sleep Spindle Dynamics. Sleep, 2022, 45, A90-A90.	1.1	0
4	0173 Kynurenine aminotransferase II inhibition improves sleep architecture in adult male and female rats exposed to kynurenic acid elevation during development. Sleep, 2022, 45, A80-A80.	1.1	0
5	Prenatal Kynurenine Elevation Elicits Sex-Dependent Changes in Sleep and Arousal During Adulthood: Implications for Psychotic Disorders. Schizophrenia Bulletin, 2021, 47, 1320-1330.	4.3	11
6	Time of Day-Dependent Alterations in Hippocampal Kynurenic Acid, Glutamate, and GABA in Adult Rats Exposed to Elevated Kynurenic Acid During Neurodevelopment. Frontiers in Psychiatry, 2021, 12, 734984.	2.6	8
7	Application of Machine Learning to Sleep Stage Classification. , 2021, , .		7
8	Acute sleep deprivation during pregnancy in rats: Rapid elevation of placental and fetal inflammation and kynurenic acid. Neurobiology of Stress, 2020, 12, 100204.	4.0	17
9	Exposure to elevated embryonic kynurenine in rats: Sex-dependent learning and memory impairments in adult offspring. Neurobiology of Learning and Memory, 2020, 174, 107282.	1.9	10
10	The Effects of a Gluten-Free Diet on Immune Markers and Kynurenic Acid Pathway Metabolites in Patients With Schizophrenia Positive for Antigliadin Antibodies Immunoglobulin G. Journal of Clinical Psychopharmacology, 2020, 40, 317-319.	1.4	3
11	Inhibition of kynurenine aminotransferase II attenuates hippocampusâ€dependent memory deficit in adult rats treated prenatally with kynurenine. Hippocampus, 2019, 29, 73-77.	1.9	38
12	Influence of plasma cytokines on kynurenine and kynurenic acid in schizophrenia. Neuropsychopharmacology, 2018, 43, 1675-1680.	5 . 4	38
13	Basic Neuroscience Illuminates Causal Relationship Between Sleep and Memory: Translating to Schizophrenia. Schizophrenia Bulletin, 2018, 44, 7-14.	4.3	38
14	Sex Differences in Hippocampal Memory and Kynurenic Acid Formation Following Acute Sleep Deprivation in Rats. Scientific Reports, 2018, 8, 6963.	3.3	33
15	Prenatal kynurenine treatment in rats causes schizophrenia-like broad monitoring deficits in adulthood. Psychopharmacology, 2018, 235, 651-661.	3.1	19
16	Peripheral Cortisol and Inflammatory Response to a Psychosocial Stressor in People with Schizophrenia. Journal of Neuropsychiatry (Foster City, Calif), 2018, 02, .	0.1	14
17	A High-performance Liquid Chromatography Measurement of Kynurenine and Kynurenic Acid: Relating Biochemistry to Cognition and Sleep in Rats. Journal of Visualized Experiments, 2018, , .	0.3	1
18	Exercise Your Kynurenines to Fight Depression. Trends in Neurosciences, 2018, 41, 491-493.	8.6	14

#	Article	IF	Citations
19	Salivary kynurenic acid response to psychological stress: inverse relationship to cortical glutamate in schizophrenia. Neuropsychopharmacology, 2018, 43, 1706-1711.	5.4	24
20	Elevated kynurenine pathway metabolism during neurodevelopment: Implications for brain and behavior. Neuropharmacology, 2017, 112, 275-285.	4.1	69
21	Adaptive and Behavioral Changes in Kynurenine 3-Monooxygenase Knockout Mice: Relevance to Psychotic Disorders. Biological Psychiatry, 2017, 82, 756-765.	1.3	57
22	Prenatal Dynamics of Kynurenine Pathway Metabolism in Mice: Focus on Kynurenic Acid. Developmental Neuroscience, 2017, 39, 519-528.	2.0	41
23	Acute Kynurenine Challenge Disrupts Sleep–Wake Architecture and Impairs Contextual Memory in Adult Rats. Sleep, 2017, 40, .	1.1	27
24	Astrocytes as Pharmacological Targets in the Treatment of Schizophrenia. Handbook of Behavioral Neuroscience, 2016, 23, 423-443.	0.7	17
25	Reduced kynurenine pathway metabolism and cytokine expression in the prefrontal cortex of depressed individuals. Journal of Psychiatry and Neuroscience, 2016, 41, 386-394.	2.4	79
26	Prenatal kynurenine exposure in rats: age-dependent changes in NMDA receptor expression and conditioned fear responding. Psychopharmacology, 2016, 233, 3725-3735.	3.1	26
27	Elevated levels of kynurenic acid during gestation produce neurochemical, morphological, and cognitive deficits in adulthood: Implications for schizophrenia. Neuropharmacology, 2015, 90, 33-41.	4.1	77
28	The Role of Kynurenine Pathway Metabolites in Neuropsychiatric Disorders., 2015,, 241-254.		1
29	Targeting Kynurenine Aminotransferase II in Psychiatric Diseases: Promising Effects of an Orally Active Enzyme Inhibitor. Schizophrenia Bulletin, 2014, 40, S152-S158.	4.3	63
30	Stress-Induced Increase in Kynurenic Acid as a Potential Biomarker for Patients With Schizophrenia and Distress Intolerance. JAMA Psychiatry, 2014, 71, 761.	11.0	68
31	Continuous kynurenine administration during the prenatal period, but not during adolescence, causes learning and memory deficits in adult rats. Psychopharmacology, 2014, 231, 2799-2809.	3.1	68
32	Early developmental elevations of brain kynurenic acid impair cognitive flexibility in adults: Reversal with galantamine. Neuroscience, 2013, 238, 19-28.	2.3	74
33	Pre―and postnatal exposure to kynurenine causes cognitive deficits in adulthood. European Journal of Neuroscience, 2012, 35, 1605-1612.	2.6	84
34	Modulation of ABCA1 by an LXR Agonist Reduces Beta-Amyloid Levels and Improves Outcome after Traumatic Brain Injury. Journal of Neurotrauma, 2011, 28, 225-236.	3.4	54
35	Fluctuations in Endogenous Kynurenic Acid Control Hippocampal Glutamate and Memory. Neuropsychopharmacology, 2011, 36, 2357-2367.	5.4	137
36	Microglial low-density lipoprotein receptor-related protein 1 modulates c-Jun N-terminal kinase activation. Journal of Neuroimmunology, 2009, 214, 25-32.	2.3	48

ANA POCIVAVSEK

#	Article	IF	CITATIONS
37	Lowâ€density lipoprotein receptors regulate microglial inflammation through câ€Jun Nâ€ŧerminal kinase. Glia, 2009, 57, 444-453.	4.9	79
38	Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. Nature Medicine, 2009, 15, 377-379.	30.7	219
39	Inhibition of c-Jun N-terminal kinase increases apoE expression in vitro and in vivo. Biochemical and Biophysical Research Communications, 2009, 387, 516-520.	2.1	20
40	Dehydroepiandrosterone formation is independent of cytochrome P450 17α-hydroxylase/17, 20 lyase activity in the mouse brain. Journal of Steroid Biochemistry and Molecular Biology, 2009, 115, 86-90.	2.5	8
41	Ventral hippocampal $\hat{l}\pm7$ and $\hat{l}\pm4\hat{l}^22$ nicotinic receptor blockade and clozapine effects on memory in female rats. Psychopharmacology, 2006, 188, 597-604.	3.1	29
42	Effects of apoE on neuronal signaling and APP processing in rodent brain. Brain Research, 2006, 1112, 70-79.	2.2	27
43	Apolipoprotein E Receptor 2 Interactions with the N-Methyl-D-aspartate Receptor. Journal of Biological Chemistry, 2006, 281, 3425-3431.	3.4	82
44	Reversal of Clozapine Effects on Working Memory in Rats with Fimbria–Fornix Lesions. Neuropsychopharmacology, 2005, 30, 1121-1127.	5.4	32