Amjad Rehman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4223569/publications.pdf

Version: 2024-02-01

232 papers 9,937 citations

55 h-index

28274

83 g-index

236 all docs

236 docs citations

236 times ranked

4768 citing authors

#	Article	IF	CITATIONS
1	Brain tumor detection using fusion of hand crafted and deep learning features. Cognitive Systems Research, 2020, 59, 221-230.	2.7	248
2	Medical Image Segmentation Methods, Algorithms, and Applications. IETE Technical Review (Institution) Tj ETQq0	0.0 rgBT	/Overlock 10 235
3	Multimodal Brain Tumor Classification Using Deep Learning and Robust Feature Selection: A Machine Learning Application for Radiologists. Diagnostics, 2020, 10, 565.	2.6	231
4	Classification of acute lymphoblastic leukemia using deep learning. Microscopy Research and Technique, 2018, 81, 1310-1317.	2.2	193
5	A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer's Disease Stages Using Resting-State fMRI and Residual Neural Networks. Journal of Medical Systems, 2020, 44, 37.	3.6	189
6	Microscopic brain tumor detection and classification using <scp>3D CNN</scp> and feature selection architecture. Microscopy Research and Technique, 2021, 84, 133-149.	2.2	177
7	CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features. Computers and Electronics in Agriculture, 2018, 155, 220-236.	7.7	170
8	Brain tumor segmentation in multiâ€spectral MRI using convolutional neural networks (CNN). Microscopy Research and Technique, 2018, 81, 419-427.	2.2	169
9	Region Extraction and Classification of Skin Cancer: A Heterogeneous framework of Deep CNN Features Fusion and Reduction. Journal of Medical Systems, 2019, 43, 289.	3.6	167
10	Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges. Journal of Infection and Public Health, 2020, 13, 1274-1289.	4.1	161
11	Brain tumor detection using statistical and machine learning method. Computer Methods and Programs in Biomedicine, 2019, 177, 69-79.	4.7	153
12	Brain tumor detection and classification: A framework of markerâ€based watershed algorithm and multilevel priority features selection. Microscopy Research and Technique, 2019, 82, 909-922.	2.2	131
13	An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microscopy Research and Technique, 2018, 81, 528-543.	2.2	129
14	Secure and energy-efficient framework using Internet of Medical Things for e-healthcare. Journal of Infection and Public Health, 2020, 13, 1567-1575.	4.1	109
15	Skin cancer detection from dermoscopic images using deep learning and fuzzy ⟨i⟩k⟨/i⟩â€means clustering. Microscopy Research and Technique, 2022, 85, 339-351.	2.2	107
16	Classification of stomach infections: A paradigm of convolutional neural network along with classical features fusion and selection. Microscopy Research and Technique, 2020, 83, 562-576.	2.2	106
17	Prediction of COVID-19 - Pneumonia based on Selected Deep Features and One Class Kernel Extreme Learning Machine. Computers and Electrical Engineering, 2021, 90, 106960.	4.8	106
18	A robust technique for copy-move forgery detection and localization in digital images via stationary wavelet and discrete cosine transform. Journal of Visual Communication and Image Representation, 2018, 53, 202-214.	2.8	105

#	Article	IF	CITATIONS
19	A Sustainable Deep Learning Framework for Object Recognition Using Multi-Layers Deep Features Fusion and Selection. Sustainability, 2020, 12, 5037.	3.2	105
20	Brain tumor detection and multiâ€classification using advanced deep learning techniques. Microscopy Research and Technique, 2021, 84, 1296-1308.	2.2	104
21	Brain tumor segmentation using Kâ€means clustering and deep learning with synthetic data augmentation for classification. Microscopy Research and Technique, 2021, 84, 1389-1399.	2.2	103
22	Detection of copy-move image forgery based on discrete cosine transform. Neural Computing and Applications, 2018, 30, 183-192.	5.6	102
23	Neural networks for document image preprocessing: state of the art. Artificial Intelligence Review, 2014, 42, 253-273.	15.7	98
24	A New Approach for Brain Tumor Segmentation and Classification Based on Score Level Fusion Using Transfer Learning. Journal of Medical Systems, 2019, 43, 326.	3.6	98
25	License number plate recognition system using entropyâ€based features selection approach with SVM. IET Image Processing, 2018, 12, 200-209.	2.5	97
26	Brain tumor detection: a long short-term memory (LSTM)-based learning model. Neural Computing and Applications, 2020, 32, 15965-15973.	5.6	97
27	A framework of human action recognition using length control features fusion and weighted entropy-variances based feature selection. Image and Vision Computing, 2021, 106, 104090.	4.5	97
28	Fuzzy C-means and region growing based classification of tumor from mammograms using hybrid texture feature. Journal of Computational Science, 2018, 29, 34-45.	2.9	96
29	A Revisit of Internet of Things Technologies for Monitoring and Control Strategies in Smart Agriculture. Agronomy, 2022, 12, 127.	3.0	96
30	Hand-crafted and deep convolutional neural network features fusion and selection strategy: An application to intelligent human action recognition. Applied Soft Computing Journal, 2020, 87, 105986.	7.2	93
31	Detecting Pneumonia Using Convolutions and Dynamic Capsule Routing for Chest X-ray Images. Sensors, 2020, 20, 1068.	3.8	93
32	Fault Detection in Wireless Sensor Networks through the Random Forest Classifier. Sensors, 2019, 19, 1568.	3.8	89
33	Multi-Model Deep Neural Network based Features Extraction and Optimal Selection Approach for Skin Lesion Classification. , $2019,$,.		88
34	Current Techniques for Diabetes Prediction: Review and Case Study. Applied Sciences (Switzerland), 2019, 9, 4604.	2.5	84
35	Content-based image retrieval using PSO and k-means clustering algorithm. Arabian Journal of Geosciences, 2015, 8, 6211-6224.	1.3	83
36	Feature enhancement framework for brain tumor segmentation and classification. Microscopy Research and Technique, 2019, 82, 803-811.	2.2	81

#	Article	IF	CITATIONS
37	Appearance based pedestrians' gender recognition by employing stacked auto encoders in deep learning. Future Generation Computer Systems, 2018, 88, 28-39.	7.5	79
38	Deep learning model integrating features and novel classifiers fusion for brain tumor segmentation. Microscopy Research and Technique, 2019, 82, 1302-1315.	2.2	79
39	Computer-assisted brain tumor type discrimination using magnetic resonance imaging features. Biomedical Engineering Letters, 2018, 8, 5-28.	4.1	78
40	Lungs nodule detection framework from computed tomography images using support vector machine. Microscopy Research and Technique, 2019, 82, 1256-1266.	2.2	77
41	Skin lesion segmentation and classification: A unified framework of deep neural network features fusion and selection. Expert Systems, 2022, 39, e12497.	4.5	77
42	Mobile-Health Applications for the Efficient Delivery of Health Care Facility to People with Dementia (PwD) and Support to Their Carers: A Survey. BioMed Research International, 2019, 2019, 1-26.	1.9	75
43	A comprehensive study of mobile-health based assistive technology for the healthcare of dementia and Alzheimer's disease (AD). Health Care Management Science, 2020, 23, 287-309.	2.6	75
44	Microscopic melanoma detection and classification: A framework of pixelâ€based fusion and multilevel features reduction. Microscopy Research and Technique, 2020, 83, 410-423.	2.2	75
45	Blockchain Based Sustainable Local Energy Trading Considering Home Energy Management and Demurrage Mechanism. Sustainability, 2020, 12, 3385.	3.2	71
46	Removal of pectoral muscle based on topographic map and shape-shifting silhouette. BMC Cancer, 2018, 18, 778.	2.6	69
47	Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion. Microscopy Research and Technique, 2019, 82, 741-763.	2.2	69
48	A novel classification scheme to decline the mortality rate among women due to breast tumor. Microscopy Research and Technique, 2018, 81, 171-180.	2,2	68
49	Scene analysis and search using local features and support vector machine for effective content-based image retrieval. Artificial Intelligence Review, 2019, 52, 901-925.	15.7	67
50	Retinal imaging analysis based on vessel detection. Microscopy Research and Technique, 2017, 80, 799-811.	2.2	64
51	Microscopic abnormality classification of cardiac murmurs using ANFIS and HMM. Microscopy Research and Technique, 2018, 81, 449-457.	2.2	64
52	Machine aided malaria parasitemia detection in Giemsa-stained thin blood smears. Neural Computing and Applications, 2018, 29, 803-818.	5.6	62
53	Microscopic skin laceration segmentation and classification: A framework of statistical normal distribution and optimal feature selection. Microscopy Research and Technique, 2019, 82, 1471-1488.	2.2	62
54	An automated system for cucumber leaf diseased spot detection and classification using improved saliency method and deep features selection. Multimedia Tools and Applications, 2020, 79, 18627-18656.	3.9	62

#	Article	IF	CITATIONS
55	Fundus image classification methods for the detection of glaucoma: A review. Microscopy Research and Technique, 2018, 81, 1105-1121.	2.2	60
56	Features extraction for soccer video semantic analysis: current achievements and remaining issues. Artificial Intelligence Review, 2014, 41, 451-461.	15.7	59
57	An effective content-based image retrieval technique for image visuals representation based on the bag-of-visual-words model. PLoS ONE, 2018, 13, e0194526.	2.5	59
58	Fused features mining for depth-based hand gesture recognition to classify blind human communication. Neural Computing and Applications, 2017, 28, 3285-3294.	5.6	58
59	Short-Term Electric Load and Price Forecasting Using Enhanced Extreme Learning Machine Optimization in Smart Grids. Energies, 2019, 12, 866.	3.1	57
60	Malicious Insider Attack Detection in IoTs Using Data Analytics. IEEE Access, 2020, 8, 11743-11753.	4.2	57
61	Discriminative Features Mining for Offline Handwritten Signature Verification. 3D Research, 2014, 5, 1.	1.8	55
62	Automated nuclei segmentation of malignant using level sets. Microscopy Research and Technique, 2016, 79, 993-997.	2.2	55
63	A comparative study of features selection for skin lesion detection from dermoscopic images. Network Modeling Analysis in Health Informatics and Bioinformatics, 2020, 9, 1.	2.1	54
64	Content-Based Image Retrieval Based on Visual Words Fusion Versus Features Fusion of Local and Global Features. Arabian Journal for Science and Engineering, 2018, 43, 7265-7284.	3.0	53
65	Cloudâ€based decision support system for the detection and classification of malignant cells in breast cancer using breast cytology images. Microscopy Research and Technique, 2019, 82, 775-785.	2.2	53
66	Automated lung nodule detection and classification based on multiple classifiers voting. Microscopy Research and Technique, 2019, 82, 1601-1609.	2.2	52
67	Fruits diseases classification: exploiting a hierarchical framework for deep features fusion and selection. Multimedia Tools and Applications, 2020, 79, 25763-25783.	3.9	52
68	Microscopic malaria parasitemia diagnosis and grading on benchmark datasets. Microscopy Research and Technique, 2018, 81, 1042-1058.	2.2	49
69	Prostate Cancer Detection Using Deep Learning and Traditional Techniques. IEEE Access, 2021, 9, 27085-27100.	4.2	49
70	Machine learning techniques to detect and forecast the daily total COVIDâ€19 infected and deaths cases under different lockdown types. Microscopy Research and Technique, 2021, 84, 1462-1474.	2.2	49
71	Face Recognition: A Survey. Journal of Engineering Science and Technology Review, 2017, 10, 166-177.	0.4	48
72	Effects of artificially intelligent tools on pattern recognition. International Journal of Machine Learning and Cybernetics, 2013, 4, 155-162.	3.6	47

#	Article	IF	CITATIONS
73	Vision-Based Sign Language Classification: A Directional Review. IETE Technical Review (Institution of) Tj ETQq1 1	. 0 ₃ 784314	rgBT /Over
74	Brain Tumor Detection from MRI images using Multi-level Wavelets. , 2019, , .		47
75	An Intelligent Fused Approach for Face Recognition. Journal of Intelligent Systems, 2013, 22, 197-212.	1.6	46
76	Methods and strategies on off-line cursive touched characters segmentation: a directional review. Artificial Intelligence Review, 2014, 42, 1047-1066.	15.7	46
77	Threat Analysis and Distributed Denial of Service (DDoS) Attack Recognition in the Internet of Things (IoT). Electronics (Switzerland), 2022, 11, 494.	3.1	46
78	Automated techniques for blood vessels segmentation through fundus retinal images: A review. Microscopy Research and Technique, 2019, 82, 153-170.	2.2	45
79	Annotated comparisons of proposed preprocessing techniques for script recognition. Neural Computing and Applications, 2014, 25, 1337-1347.	5.6	44
80	Weather forecasting based on hybrid neural model. Applied Water Science, 2017, 7, 3869-3874.	5.6	43
81	Entropyâ€controlled deep features selection framework for grape leaf diseases recognition. Expert Systems, 2022, 39, .	4.5	43
82	Computer vision for microscopic skin cancer diagnosis using handcrafted and nonâ€handcrafted features. Microscopy Research and Technique, 2021, 84, 1272-1283.	2.2	43
83	Performance analysis of character segmentation approach for cursive script recognition on benchmark database., 2011, 21, 486-490.		42
84	Evaluation of artificial intelligent techniques to secure information in enterprises. Artificial Intelligence Review, 2014, 42, 1029-1044.	15.7	42
85	Lung Nodule Detection based on Ensemble of Hand Crafted and Deep Features. Journal of Medical Systems, 2019, 43, 332.	3.6	42
86	An ensemble classification of exudates in color fundus images using an evolutionary algorithm based optimal features selection. Microscopy Research and Technique, 2019, 82, 361-372.	2.2	42
87	Brain Tumor Classification: Feature Fusion. , 2019, , .		42
88	Deep Learning-Based COVID-19 Detection Using CT and X-Ray Images: Current Analytics and Comparisons. IT Professional, 2021, 23, 63-68.	1.5	42
89	Fuzzy Phoneme Classification Using Multi-speaker Vocal Tract Length Normalization. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 2014, 31, 128-136.	3.2	41
90	Digital Dental X-ray Database for Caries Screening. 3D Research, 2016, 7, 1.	1.8	41

#	Article	IF	Citations
91	A deep neural network and classical features based scheme for objects recognition: an application for machine inspection. Multimedia Tools and Applications, 2024, 83, 14935-14957.	3.9	41
92	Intrusion Detection System Through Advance Machine Learning for the Internet of Things Networks. IT Professional, 2021, 23, 58-64.	1.5	41
93	Automatic detection of papilledema through fundus retinal images using deep learning. Microscopy Research and Technique, 2021, 84, 3066-3077.	2.2	41
94	DOCUMENT SKEW ESTIMATION AND CORRECTION: ANALYSIS OF TECHNIQUES, COMMON PROBLEMS AND POSSIBLE SOLUTIONS. Applied Artificial Intelligence, 2011, 25, 769-787.	3.2	39
95	Volumetric Segmentation of Brain Regions From MRI Scans Using 3D Convolutional Neural Networks. IEEE Access, 2020, 8, 103697-103709.	4.2	39
96	Off-line cursive script recognition: current advances, comparisons and remaining problems. Artificial Intelligence Review, 2012, 37, 261-288.	15.7	38
97	Enhanced Time-of-Use Electricity Price Rate Using Game Theory. Electronics (Switzerland), 2019, 8, 48.	3.1	38
98	Secure and Energy-Aware Heuristic Routing Protocol for Wireless Sensor Network. IEEE Access, 2020, 8, 163962-163974.	4.2	37
99	A Realistic Image Generation of Face From Text Description Using the Fully Trained Generative Adversarial Networks. IEEE Access, 2021, 9, 1250-1260.	4.2	37
100	Facial Emotion Recognition Using Conventional Machine Learning and Deep Learning Methods: Current Achievements, Analysis and Remaining Challenges. Information (Switzerland), 2022, 13, 268.	2.9	36
101	Diabetic retinopathy detection and classification using hybrid feature set. Microscopy Research and Technique, 2018, 81, 990-996.	2.2	35
102	Plasmodium life cycle stage classification based quantification of malaria parasitaemia in thin blood smears. Microscopy Research and Technique, 2019, 82, 283-295.	2.2	34
103	Use of machine intelligence to conduct analysis of human brain data for detection of abnormalities in its cognitive functions. Multimedia Tools and Applications, 2020, 79, 10955-10973.	3.9	34
104	Evaluation of Current Documents Image Denoising Techniques: A Comparative Study. Applied Artificial Intelligence, 2014, 28, 879-887.	3.2	33
105	Data Hiding Based on Improved Exploiting Modification Direction Method and Huffman Coding. Journal of Intelligent Systems, 2014, 23, 451-459.	1.6	33
106	Handling Irregularly Sampled Longitudinal Data and Prognostic Modeling of Diabetes Using Machine Learning Technique. IEEE Access, 2020, 8, 21875-21885.	4.2	33
107	A joint framework of feature reduction and robust feature selection for cucumber leaf diseases recognition. Optik, 2021, 240, 166566.	2.9	33
108	Rouleaux red blood cells splitting in microscopic thin blood smear images via local maxima, circles drawing, and mapping with original RBCs. Microscopy Research and Technique, 2018, 81, 737-744.	2.2	32

#	Article	IF	Citations
109	Improved Deep Convolutional Neural Network to Classify Osteoarthritis from Anterior Cruciate Ligament Tear Using Magnetic Resonance Imaging. Journal of Personalized Medicine, 2021, 11, 1163.	2.5	32
110	Recognition of Partially Occluded Objects Based on the Three Different Color Spaces (RGB, YCbCr,) Tj ETQq0 (0 0 rgBT /Ov	verlock 10 Tf 5
111	Data hiding technique in steganography for information security using number theory. Journal of Information Science, 2019, 45, 767-778.	3.3	31
112	Recent Developments in Detection of Central Serous Retinopathy Through Imaging and Artificial Intelligence Techniques–A Review. IEEE Access, 2021, 9, 168731-168748.	4.2	31
113	Virtual machine security challenges: case studies. International Journal of Machine Learning and Cybernetics, 2014, 5, 729-742.	3.6	30
114	A New Leaf Venation Detection Technique for Plant Species Classification. Arabian Journal for Science and Engineering, 2019, 44, 3315-3327.	3.0	30
115	Machine Learning Algorithms and Fault Detection for Improved Belief Function Based Decision Fusion in Wireless Sensor Networks. Sensors, 2019, 19, 1334.	3.8	30
116	Deep Learning-Based Automatic Detection of Central Serous Retinopathy using Optical Coherence Tomographic Images., 2021,,.		30
117	ANALYSIS OF VISION BASED SYSTEMS TO DETECT REAL TIME GOAL EVENTS IN SOCCER VIDEOS. Applied Artificial Intelligence, 2013, 27, 656-667.	3.2	29
118	Replacement Attack: A New Zero Text Watermarking Attack. 3D Research, 2017, 8, 1.	1.8	29
119	Real-Time Diagnosis System of COVID-19 Using X-Ray Images and Deep Learning. IT Professional, 2021, 23, 57-62.	1.5	29
120	A Machine-Learning-Based Approach for Autonomous IoT Security. IT Professional, 2021, 23, 69-75.	1.5	28
121	Intelligent microscopic approach for identification and recognition of citrus deformities. Microscopy Research and Technique, 2019, 82, 1542-1556.	2.2	27
122	Short-Term Forecasting for the Electricity Spot Prices With Extreme Values Treatment. IEEE Access, 2021, 9, 105451-105462.	4.2	27
123	WETRP: Weight Based Energy & Department of the Weight Based Energy & Department & Dep	4.2	26
124	Viral reverse engineering using Artificial Intelligence and big data COVID-19 infection with Long Short-term Memory (LSTM). Environmental Technology and Innovation, 2021, 22, 101531.	6.1	25
125	Hybrid Retinal Image Enhancement Algorithm for Diabetic Retinopathy Diagnostic Using Deep Learning Model. IEEE Access, 2022, 10, 73079-73086.	4.2	25
126	Blend Shape Interpolation and FACS for Realistic Avatar. 3D Research, 2015, 6, 1.	1.8	24

#	Article	IF	CITATIONS
127	Single and Multiple Copy–Move Forgery Detection and Localization in Digital Images Based on the Sparsely Encoded Distinctive Features and DBSCAN Clustering. Arabian Journal for Science and Engineering, 2020, 45, 2975-2992.	3.0	24
128	Automatic Image Annotation Based on Deep Learning Models: A Systematic Review and Future Challenges. IEEE Access, 2021, 9, 50253-50264.	4.2	24
129	Deep convolutional generative adversarial network for Alzheimer's disease classification using positron emission tomography (<scp>PET</scp>) and synthetic data augmentation. Microscopy Research and Technique, 2021, 84, 3023-3034.	2.2	24
130	Microscopic segmentation and classification of <scp>COVID</scp> â€19 infection with ensemble convolutional neural network. Microscopy Research and Technique, 2022, 85, 385-397.	2.2	23
131	Harris Hawks Sparse Auto-Encoder Networks for Automatic Speech Recognition System. Applied Sciences (Switzerland), 2022, 12, 1091.	2.5	23
132	Automated Knee MR Images Segmentation of Anterior Cruciate Ligament Tears. Sensors, 2022, 22, 1552.	3.8	23
133	A robust technique for copy-move forgery detection from small and extremely smooth tampered regions based on the DHE-SURF features and mDBSCAN clustering. Australian Journal of Forensic Sciences, 0, , 1-24.	1.2	22
134	Intrusion Detection in Smart City Hospitals using Ensemble Classifiers. , 2020, , .		22
135	Multifocus watermarking approach based on discrete cosine transform. Microscopy Research and Technique, 2016, 79, 431-437.	2.2	21
136	Boosting the Performance of the BoVW Model Using SURF–CoHOG-Based Sparse Features with Relevance Feedback for CBIR. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 2020, 44, 99-118.	2.3	20
137	Hybrid Segmentation Method With Confidence Region Detection for Tumor Identification. IEEE Access, 2021, 9, 35256-35278.	4.2	20
138	Multi-Images Encryption Scheme Based on 3D Chaotic Map and Substitution Box. IEEE Access, 2021, 9, 73924-73937.	4.2	20
139	Categorizing the Students' Activities for Automated Exam Proctoring Using Proposed Deep L2-GraftNet CNN Network and ASO Based Feature Selection Approach. IEEE Access, 2021, 9, 47639-47656.	4.2	20
140	Secured Big Data Analytics for Decision-Oriented Medical System Using Internet of Things. Electronics (Switzerland), 2021, 10, 1273.	3.1	20
141	Breast microscopic cancer segmentation and classification using unique <scp>4â€qubit</scp> â€quantum model. Microscopy Research and Technique, 2022, 85, 1926-1936.	2.2	20
142	Efficient hybrid approach to segment and classify exudates for DR prediction. Multimedia Tools and Applications, 2020, 79, 11107-11123.	3.9	19
143	Gastric Tract Infections Detection and Classification from Wireless Capsule Endoscopy using Computer Vision Techniques: A Review. Current Medical Imaging, 2021, 16, 1229-1242.	0.8	19
144	Suspicious Activity Recognition Using Proposed Deep L4-Branched-Actionnet With Entropy Coded Ant Colony System Optimization. IEEE Access, 2021, 9, 89181-89197.	4.2	19

#	Article	IF	Citations
145	Energy-Efficient IoT e-Health Using Artificial Intelligence Model with Homomorphic Secret Sharing. Energies, 2021, 14, 6414.	3.1	19
146	Trust Management With Fault-Tolerant Supervised Routing for Smart Cities Using Internet of Things. IEEE Internet of Things Journal, 2022, 9, 22608-22617.	8.7	19
147	Simple and effective techniques for core-region detection and slant correction in offline script recognition. , 2009, , .		18
148	LLTP-QoS: Low Latency Traffic Prioritization and QoS-Aware Routing in Wireless Body Sensor Networks. IEEE Access, 2019, 7, 152777-152787.	4.2	18
149	EGCIR: Energy-Aware Graph Clustering and Intelligent Routing Using Supervised System in Wireless Sensor Networks. Energies, 2020, 13, 4072.	3.1	18
150	M-SMDM: A model of security measures using Green Internet of Things with Cloud Integrated Data Management for Smart Cities. Environmental Technology and Innovation, 2021, 24, 101802.	6.1	17
151	Online versus offline Arabic script classification. Neural Computing and Applications, 2016, 27, 1797-1804.	5.6	16
152	Intelligent Resource Allocation in Residential Buildings Using Consumer to Fog to Cloud Based Framework. Energies, 2019, 12, 815.	3.1	16
153	Mobility Support 5G Architecture with Real-Time Routing for Sustainable Smart Cities. Sustainability, 2021, 13, 9092.	3.2	16
154	Hot-Spot Zone Detection to Tackle Covid19 Spread by Fusing the Traditional Machine Learning and Deep Learning Approaches of Computer Vision. IEEE Access, 2021, 9, 100040-100049.	4.2	16
155	Temperature and Reliability-Aware Routing Protocol for Wireless Body Area Networks. IEEE Access, 2021, 9, 140413-140423.	4.2	16
156	Plasmodium species aware based quantification of malaria parasitemia in light microscopy thin blood smear. Microscopy Research and Technique, 2019, 82, 1198-1214.	2.2	15
157	Internet of medical things embedding deep learning with data augmentation for mammogram density classification. Microscopy Research and Technique, 2021, 84, 2186-2194.	2.2	15
158	Authentication through gender classification from iris images using support vector machine. Microscopy Research and Technique, 2021, 84, 2666-2676.	2.2	15
159	An Automated Deep Learning Approach to Diagnose Glaucoma using Retinal Fundus Images. , 2021, , .		15
160	Detection of glaucoma based on cup-to-disc ratio using fundus images. International Journal of Intelligent Systems Technologies and Applications, 2020, 19, 1.	0.2	14
161	Human Action Recognition using Machine Learning in Uncontrolled Environment. , 2021, , .		14
162	Device-to-Device (D2D) Multi-Criteria Learning Algorithm Using Secured Sensors. Sensors, 2022, 22, 2115.	3.8	14

#	Article	IF	CITATIONS
163	Deep Learning Approach to Diagnose Alzheimer's Disease through Magnetic Resonance Images. , 2021, , .		14
164	Towards Void Hole Alleviation by Exploiting the Energy Efficient Path and by Providing the Interference-Free Proactive Routing Protocols in IoT Enabled Underwater WSNs. Sensors, 2019, 19, 1313.	3.8	13
165	An Unsupervised Learning with Feature Approach for Brain Tumor Segmentation Using Magnetic Resonance Imaging., 2019,,.		13
166	RDH-based dynamic weighted histogram equalization using for secure transmission and cancer prediction. Multimedia Systems, 2021, 27, 177-189.	4.7	13
167	Microscopic retinal blood vessels detection and segmentation using support vector machine and Kâ€nearest neighbors. Microscopy Research and Technique, 2022, 85, 1899-1914.	2.2	13
168	Fast Markerless Tracking for Augmented Reality in Planar Environment. 3D Research, 2015, 6, 1.	1.8	12
169	Writers Identification Based on Multiple Windows Features Mining. 3D Research, 2016, 7, 1.	1.8	12
170	Generalized PVOâ€based dynamic block reversible data hiding for secure transmission using firefly algorithm. Transactions on Emerging Telecommunications Technologies, 2022, 33, e3680.	3.9	12
171	An Intelligent Saliency Segmentation Technique and Classification of Low Contrast Skin Lesion Dermoscopic Images Based on Histogram Decision. , 2019, , .		12
172	Pixel Intensity Based Cumulative Features for Moving Object Tracking (MOT) in Darkness. 3D Research, 2016, 7, 1.	1.8	11
173	Reliability Analysis for Electronic Devices Using Generalized Exponential Distribution. IEEE Access, 2020, 8, 108629-108644.	4.2	11
174	An Efficient Pattern Recognition Based Method for Drug-Drug Interaction Diagnosis., 2021,,.		11
175	A probabilistic segmentation and entropy-rank correlation-based feature selection approach for the recognition of fruit diseases. Eurasip Journal on Image and Video Processing, 2021, 2021, .	2.6	11
176	A Review on Multi-organ Cancer Detection Using Advanced Machine Learning Techniques. Current Medical Imaging, 2021, 17, 686-694.	0.8	11
177	Machine learning for <scp>postâ€traumatic</scp> stress disorder identification utilizing <scp>restingâ€state</scp> functional magnetic resonance imaging. Microscopy Research and Technique, 2022, 85, 2083-2094.	2.2	11
178	Automated Brain Tumor Segmentation and Classification Through MRI Images. Communications in Computer and Information Science, 2022, , 182-194.	0.5	11
179	Optimizing the transferâ€learning with pretrained deep convolutional neural networks for first stage breast tumor diagnosis using breast ultrasound visual images. Microscopy Research and Technique, 2022, 85, 1444-1453.	2.2	11
180	Internet of things (IoT) assisted soil salinity mapping at irrigation schema level. Applied Water Science, 2022, 12, 1.	5.6	11

#	Article	IF	Citations
181	Efficient data uncertainty management for health industrial internet of things using machine learning. International Journal of Communication Systems, 2021, 34, e4948.	2.5	10
182	3D Texture Features Mining for MRI Brain Tumor Identification. 3D Research, 2014, 5, 1.	1.8	9
183	The Correlation Between Blood Oxygenation Effects and Human Emotion Towards Facial Skin Colour of Virtual Human. 3D Research, 2015, 6, 1.	1.8	9
184	CDR based glaucoma detection using fundus images: a review. International Journal of Applied Pattern Recognition, 2017, 4, 261.	0.4	9
185	Enhancing fragility of zero-based text watermarking utilizing effective characters list. Multimedia Tools and Applications, 2020, 79, 341-354.	3.9	9
186	A passive technique for detecting copy-move forgeries by image feature matching. Multimedia Tools and Applications, 2020, 79, 31759-31782.	3.9	9
187	Wheat Plant Counting Using UAV Images Based on Semi-supervised Semantic Segmentation. , 2021, , .		9
188	Report: Nuclei segmentation of leukocytes in blood smear digital images. Pakistan Journal of Pharmaceutical Sciences, 2015, 28, 1801-6.	0.2	9
189	Intelligent Traffic Signal Automation Based on Computer Vision Techniques Using Deep Learning. IT Professional, 2022, 24, 27-33.	1.5	9
190	Towards Resilient and Secure Cooperative Behavior of Intelligent Transportation System Using Sensor Technologies. IEEE Sensors Journal, 2022, 22, 7352-7360.	4.7	9
191	Identity verification using palm print microscopic images based on median robust extended local binary pattern features and kâ€nearest neighbor classifier. Microscopy Research and Technique, 2022, 85, 1224-1237.	2.2	9
192	An overview of interactive wet cloth simulation in virtual reality and serious games. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2018, 6, 93-100.	1.9	8
193	Fuzzy ARTMAP Approach for Arabic Writer Identification using Novel Features Fusion. Journal of Computer Science, 2018, 14, 210-220.	0.6	8
194	Steganography-assisted secure localization of smart devices in internet of multimedia things (IoMT). Multimedia Tools and Applications, 2021, 80, 17045-17065.	3.9	8
195	Identifying Patients With PTSD Utilizing Resting-State fMRI Data and Neural Network Approach. IEEE Access, 2021, 9, 107941-107954.	4.2	8
196	On the Performance of Jackknife Based Estimators for Ridge Regression. IEEE Access, 2021, 9, 68044-68053.	4.2	8
197	Light microscopic iris classification using ensemble multiâ€class support vector machine. Microscopy Research and Technique, 2021, 84, 982-991.	2.2	8
198	Ulcer Recognition based on 6-Layers Deep Convolutional Neural Network. , 2020, , .		8

#	Article	IF	Citations
199	Classification of human's activities from gesture recognition in live videos using deep learning. Concurrency Computation Practice and Experience, 2022, 34, .	2.2	8
200	Improved Video Stabilization using SIFT-Log Polar Technique for Unmanned Aerial Vehicles. , 2019, , .		7
201	Skin Lesion Classification: An Optimized Framework of Optimal Color Features Selection., 2020,,.		7
202	An Optimization Model with Network Edges for Multimedia Sensors Using Artificial Intelligence of Things. Sensors, 2021, 21, 7103.	3.8	7
203	Machine Learning-Based Performance Comparison to Diagnose Anterior Cruciate Ligament Tears. Journal of Healthcare Engineering, 2022, 2022, 1-18.	1.9	7
204	Intelligent Bar Chart Plagiarism Detection in Documents. Scientific World Journal, The, 2014, 2014, 1-11.	2.1	6
205	Reduced Reference Image Quality Assessment Technique Based on DWT and Path Integral Local Binary Patterns. Arabian Journal for Science and Engineering, 2020, 45, 3387-3401.	3.0	6
206	An Improved Strategy for Predicting Diagnosis, Survivability, and Recurrence of Breast Cancer. Journal of Computational and Theoretical Nanoscience, 2019, 16, 3705-3711.	0.4	6
207	A Study of Software Development Cost Estimation Techniques and Models. Mehran University Research Journal of Engineering and Technology, 2020, 39, 413-431.	0.6	5
208	Reliable Bidirectional Data Transfer Approach for the Internet of Secured Medical Things Using ZigBee Wireless Network. Applied Sciences (Switzerland), 2021, 11, 9947.	2.5	4
209	Extreme Facial Expressions Classification Based on Reality Parameters. 3D Research, 2014, 5, 1.	1.8	3
210	Machine learning based air traffic control strategy. International Journal of Machine Learning and Cybernetics, 2021, 12, 2151-2161.	3.6	3
211	Real time anomalies detection in crowd using convolutional long short-term memory network. Journal of Information Science, 2023, 49, 1145-1152.	3.3	3
212	An Adaptive Image Processing Model of Plant Disease Diagnosis and Quantification Based on Color and Texture Histogram. , 2020, , .		3
213	Marker Hiding Methods: Applications in Augmented Reality. Applied Artificial Intelligence, 2015, 29, 101-118.	3.2	2
214	An ensemble of neural networks for nonlinear segmentation of overlapped cursive script. International Journal of Computational Vision and Robotics, 2020, 10, 275.	0.3	2
215	Facial Expression Recognition Using Patch-Based LBPS in an Unconstrained Environment. , 2021, , .		2
216	Discrete light sheet microscopic segmentation of left ventricle using morphological tuning and active contours. Microscopy Research and Technique, 2022, 85, 308-323.	2.2	2

#	Article	IF	Citations
217	A Study of Software Development Cost Estimation Techniques and Models. Mehran University Research Journal of Engineering and Technology, 2020, 39, 413-431.	0.6	2
218	Copy-move image forged information detection and localisation in digital images using deep convolutional network. Journal of Information Science, 0, , 016555152110500.	3.3	2
219	An Accurate Skin Lesion Classification Using Fused Pigmented Deep Feature Extraction Method. Studies in Big Data, 2022, , 47-78.	1.1	2
220	Emotional Facial Expression and Tears Simulation: An Analysis & Comparison of Current Approaches. 3D Research, 2015, 6, 1.	1.8	1
221	Neural Approach to Predict Flow Discharge in River Chenab Pakistan. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2016, 20, 730-734.	0.9	1
222	Microscopic handcrafted features selection from computed tomography scans for early stage lungs cancer diagnosis using hybrid classifiers. Microscopy Research and Technique, 2022, , .	2.2	1
223	Covid-19 Detection by using Deep learning-based Custom Convolution Neural Network (CNN)., 2021,,.		1
224	Diagnosis and Prognosis of Diabetes Mellitus with Deep Learning. , 2022, , .		1
225	Exploring Prediction of COVID-19 and its Severity using Machine Learning. , 2022, , .		1
226	Optimized Embedded Healthcare Industry Model with Lightweight Computing Using Wireless Body Area Network. Wireless Communications and Mobile Computing, 2022, 2022, 1-10.	1.2	1
227	A Novel Method for Lung Segmentation of Chest with Convolutional Neural Network. Studies in Big Data, 2022, , 239-260.	1.1	1
228	A Review on Machine Learning-Based WBCs Analysis in Blood Smear Images: Key Challenges, Datasets, and Future Directions. Studies in Big Data, 2022, , 293-314.	1.1	1
229	Analysis of Proposed Noise Detection & Emoval Technique in Degraded Fingerprint Images. 3D Research, 2015, 6, 1.	1.8	0
230	Offline touched cursive script segmentation based on pixel intensity analysis: Character segmentation based on pixel intensity analysis., 2017,,.		0
231	ML and DL Architectures Comparisons for the Classification of COVID-19 Using Chest X-Ray Images. Studies in Big Data, 2022, , 433-457.	1.1	0
232	Computer Vision-Based Prognostic Modelling of COVID-19 from Medical Imaging. Studies in Big Data, 2022, , 25-45.	1.1	0