Marlene Behrmann Behrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4222089/publications.pdf Version: 2024-02-01

	11651	17105
18,465	70	122
citations	h-index	g-index
432	432	12732
docs citations	times ranked	citing authors
	citations 432	18,46570citationsh-index432432

#	Article	IF	CITATIONS
1	What Is Special about Face Recognition? Nineteen Experiments on a Person with Visual Object Agnosia and Dyslexia but Normal Face Recognition. Journal of Cognitive Neuroscience, 1997, 9, 555-604.	2.3	609
2	Parietal cortex and attention. Current Opinion in Neurobiology, 2004, 14, 212-217.	4.2	512
3	Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas. Neuron, 2002, 34, 479-490.	8.1	508
4	Seeing it differently: visual processing in autism. Trends in Cognitive Sciences, 2006, 10, 258-264.	7.8	386
5	The idiosyncratic brain: distortion of spontaneous connectivity patterns in autism spectrum disorder. Nature Neuroscience, 2015, 18, 302-309.	14.8	364
6	Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group. American Journal of Psychiatry, 2018, 175, 359-369.	7.2	356
7	Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Developmental Science, 2007, 10, F15-F30.	2.4	344
8	Disrupted Neural Synchronization in Toddlers with Autism. Neuron, 2011, 70, 1218-1225.	8.1	341
9	Congenital prosopagnosia: face-blind from birth. Trends in Cognitive Sciences, 2005, 9, 180-187.	7.8	315
10	Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia. Nature Neuroscience, 2009, 12, 29-31.	14.8	312
11	Can Face Recognition Really be Dissociated from Object Recognition?. Journal of Cognitive Neuroscience, 1999, 11, 349-370.	2.3	290
12	Distributed circuits, not circumscribed centers, mediate visual recognition. Trends in Cognitive Sciences, 2013, 17, 210-219.	7.8	289
13	Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nature Neuroscience, 2002, 5, 1210-1216.	14.8	274
14	Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9998-10003.	7.1	270
15	Unreliable Evoked Responses in Autism. Neuron, 2012, 75, 981-991.	8.1	267
16	Configural processing in autism and its relationship to face processing. Neuropsychologia, 2006, 44, 110-129.	1.6	264
17	Spatial probability as an attentional cue in visual search. Perception & Psychophysics, 2005, 67, 1252-1268.	2.3	241
18	Anatomical Abnormalities in Autism?. Cerebral Cortex, 2016, 26, 1440-1452.	2.9	225

#	Article	IF	CITATIONS
19	A mirror up to nature. Current Biology, 2008, 18, R13-R18.	3.9	220
20	A fine-grained analysis of facial expression processing in high-functioning adults with autism. Neuropsychologia, 2007, 45, 685-695.	1.6	217
21	Detailed Exploration of Face-related Processing in Congenital Prosopagnosia: 1. Behavioral Findings. Journal of Cognitive Neuroscience, 2005, 17, 1130-1149.	2.3	213
22	â€~What' Is Happening in the Dorsal Visual Pathway. Trends in Cognitive Sciences, 2016, 20, 773-784.	7.8	213
23	Dissociation between mental imagery and object recognition in a brain-damaged patient. Nature, 1992, 359, 636-637.	27.8	205
24	Impaired visual search in patients with unilateral neglect: an oculographic analysis. Neuropsychologia, 1997, 35, 1445-1458.	1.6	204
25	Detailed Exploration of Face-related Processing in Congenital Prosopagnosia: 2. Functional Neuroimaging Findings. Journal of Cognitive Neuroscience, 2005, 17, 1150-1167.	2.3	200
26	Impaired holistic processing in congenital prosopagnosia. Neuropsychologia, 2011, 49, 2541-2552.	1.6	198
27	Object-Centered Neglect in Patients with Unilateral Neglect: Effects of Left-Right Coordinates of Objects. Journal of Cognitive Neuroscience, 1994, 6, 1-16.	2.3	195
28	Probability Cuing of Target Location Facilitates Visual Search Implicitly in Normal Participants and Patients with Hemispatial Neglect. Psychological Science, 2002, 13, 520-525.	3.3	191
29	Neural variability: friend or foe?. Trends in Cognitive Sciences, 2015, 19, 322-328.	7.8	188
30	Object-based attention and occlusion: Evidence from normal participants and a computational model Journal of Experimental Psychology: Human Perception and Performance, 1998, 24, 1011-1036.	0.9	179
31	Intact visual imagery and impaired visual perception in a patient with visual agnosia Journal of Experimental Psychology: Human Perception and Performance, 1994, 20, 1068-1087.	0.9	174
32	The joint development of hemispheric lateralization for words and faces Journal of Experimental Psychology: General, 2013, 142, 348-358.	2.1	169
33	Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nature Communications, 2019, 10, 4958.	12.8	167
34	On the Interaction of Selective Attention and Lexical Knowledge: A Connectionist Account of Neglect Dyslexia. Journal of Cognitive Neuroscience, 1990, 2, 96-123.	2.3	166
35	Selective Dissociation Between Core and Extended Regions of the Face Processing Network in Congenital Prosopagnosia. Cerebral Cortex, 2014, 24, 1565-1578.	2.9	161
36	Shared and idiosyncratic cortical activation patterns in autism revealed under continuous realâ€life viewing conditions. Autism Research, 2009, 2, 220-231.	3.8	155

#	Article	lF	CITATIONS
37	Bilateral Hemispheric Processing of Words and Faces: Evidence from Word Impairments in Prosopagnosia and Face Impairments in Pure Alexia. Cerebral Cortex, 2014, 24, 1102-1118.	2.9	154
38	A LITERATURE REVIEW AND NEW DATA SUPPORTING AN INTERACTIVE ACCOUNT OF LETTER-BY-LETTER READING. Cognitive Neuropsychology, 1998, 15, 7-51.	1.1	150
39	The anatomy of the callosal and visual-association pathways in high-functioning autism: A DTI tractography study. Cortex, 2011, 47, 863-873.	2.4	150
40	Structural Imaging Reveals Anatomical Alterations in Inferotemporal Cortex in Congenital Prosopagnosia. Cerebral Cortex, 2007, 17, 2354-2363.	2.9	142
41	Facing changes and changing faces in adolescence: A new model for investigating adolescent-specific interactions between pubertal, brain and behavioral development. Developmental Cognitive Neuroscience, 2012, 2, 199-219.	4.0	142
42	Role of Attention and Perceptual Grouping in Visual Statistical Learning. Psychological Science, 2004, 15, 460-466.	3.3	139
43	Attention accesses multiple reference frames: Evidence from visual neglect Journal of Experimental Psychology: Human Perception and Performance, 1999, 25, 83-101.	0.9	137
44	Functional MRI Reveals Compromised Neural Integrity of the Face Processing Network in Congenital Prosopagnosia. Current Biology, 2009, 19, 1146-1150.	3.9	137
45	Visual complexity in letter-by-letter reading: Pure alexia is not pure. Neuropsychologia, 1998, 36, 1115-1132.	1.6	135
46	What does visual agnosia tell us about perceptual organization and its relationship to object perception?. Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 19-42.	0.9	130
47	Normal Movement Selectivity in Autism. Neuron, 2010, 66, 461-469.	8.1	130
48	A detailed investigation of facial expression processing in congenital prosopagnosia as compared to acquired prosopagnosia. Experimental Brain Research, 2007, 176, 356-373.	1.5	126
49	Complementary neural representations for faces and words: A computational exploration. Cognitive Neuropsychology, 2011, 28, 251-275.	1.1	124
50	Subcortical Brain Volume, Regional Cortical Thickness, and Cortical Surface Area Across Disorders: Findings From the ENIGMA ADHD, ASD, and OCD Working Groups. American Journal of Psychiatry, 2020, 177, 834-843.	7.2	120
51	Microgenesis and Ontogenesis of Perceptual Organization. Psychological Science, 2005, 16, 282-290.	3.3	116
52	The removal of binocular cues disrupts the calibration of grasping in patients with visual form agnosia. Experimental Brain Research, 1997, 116, 113-121.	1.5	108
53	The Functional Neuroanatomy of Object Agnosia: A Case Study. Neuron, 2011, 71, 49-60.	8.1	107
54	A vision of graded hemispheric specialization. Annals of the New York Academy of Sciences, 2015, 1359, 30-46.	3.8	107

#	Article	IF	CITATIONS
55	Coding of Spatial Information in the Somatosensory System: Evidence from Patients with Neglect following Parietal Lobe Damage. Journal of Cognitive Neuroscience, 1994, 6, 151-155.	2.3	106
56	Reduction in White Matter Connectivity, Revealed by Diffusion Tensor Imaging, May Account for Age-related Changes in Face Perception. Journal of Cognitive Neuroscience, 2008, 20, 268-284.	2.3	106
57	The rites of righting writing: Homophone remediation in acquired dysgraphia. Cognitive Neuropsychology, 1987, 4, 365-384.	1.1	101
58	An ERP investigation of the co-development of hemispheric lateralization of face and word recognition. Neuropsychologia, 2014, 61, 315-323.	1.6	100
59	Cortical Variability in the Sensory-Evoked Response in Autism. Journal of Autism and Developmental Disorders, 2015, 45, 1176-1190.	2.7	99
60	Cortical patterns of categoryâ€selective activation for faces, places and objects in adults with autism. Autism Research, 2008, 1, 52-63.	3.8	97
61	Emergence of Global Shape Processing Continues Through Adolescence. Child Development, 2009, 80, 162-177.	3.0	97
62	Congenital prosopagnosia without object agnosia? A literature review. Cognitive Neuropsychology, 2018, 35, 4-54.	1.1	94
63	Visuotopic Cortical Connectivity Underlying Attention Revealed with White-Matter Tractography. Journal of Neuroscience, 2012, 32, 2773-2782.	3.6	93
64	The Mind's Eye Mapped Onto the Brain's Matter. Current Directions in Psychological Science, 2000, 9, 50-54.	5.3	87
65	Cortical systems mediating visual attention to both objects and spatial locations. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11387-11392.	7.1	85
66	"What" Precedes "Which": Developmental Neural Tuning in Face- and Place-Related Cortex. Cerebral Cortex, 2011, 21, 1963-1980.	2.9	85
67	Learning to Segment Images Using Dynamic Feature Binding. Neural Computation, 1992, 4, 650-665.	2.2	83
68	Experience-dependent perceptual grouping and object-based attention Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 202-217.	0.9	83
69	The Neural Basis of Visual Word Form Processing: A Multivariate Investigation. Cerebral Cortex, 2013, 23, 1673-1684.	2.9	81
70	Visual attention deficits in Alzheimer's disease: Simple versus conjoined feature search Neuropsychology, 1999, 13, 223-245.	1.3	75
71	Missing the big picture: impaired development of global shape processing in autism. Autism Research, 2008, 1, 114-129.	3.8	72
72	Perceptual learning in autism: over-specificity and possible remedies. Nature Neuroscience, 2015, 18, 1574-1576.	14.8	70

#	Article	IF	CITATIONS
73	Selective attention to the parts of an object. Psychonomic Bulletin and Review, 2000, 7, 301-308.	2.8	69
74	Location, location, location: alterations in the functional topography of face- but not object- or place-related cortex in adolescents with autism. Frontiers in Human Neuroscience, 2010, 4, 26.	2.0	68
75	Object-based attention: Strength of object representation and attentional guidance. Perception & Psychophysics, 2008, 70, 132-144.	2.3	66
76	The visual white matter: The application of diffusion MRI and fiber tractography to vision science. Journal of Vision, 2017, 17, 4.	0.3	66
77	What does visual agnosia tell us about perceptual organization and its relationship to object perception?. Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 19-42.	0.9	65
78	Pure alexia: A nonspatial visual disorder affecting letter activation. Cognitive Neuropsychology, 1995, 12, 409-454.	1.1	64
79	The eye movements of pure alexic patients during reading and nonreading tasks. Neuropsychologia, 2001, 39, 983-1002.	1.6	63
80	Ventral and Dorsal Visual Stream Contributions to the Perception of Object Shape and Object Location. Journal of Cognitive Neuroscience, 2014, 26, 189-209.	2.3	63
81	Active control of locomotion facilitates nonvisual navigation Journal of Experimental Psychology: Human Perception and Performance, 2001, 27, 141-153.	0.9	62
82	The evolution of pure alexia: A longitudinal study of recovery*1. Brain and Language, 1990, 39, 405-427.	1.6	61
83	Behavioral Change and Its Neural Correlates in Visual Agnosia After Expertise Training. Journal of Cognitive Neuroscience, 2005, 17, 554-568.	2.3	61
84	Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: The <scp>ENIGMA</scp> adventure. Human Brain Mapping, 2022, 43, 37-55.	3.6	61
85	Hemispheric Organization for Visual Object Recognition: A Theoretical Account and Empirical Evidence. Perception, 2020, 49, 373-404.	1.2	61
86	Development of object recognition in humans. F1000 Biology Reports, 2009, 1, 56.	4.0	61
87	Top-down and bottom-up attentional guidance: investigating the role of the dorsal and ventral parietal cortices. Experimental Brain Research, 2010, 206, 197-208.	1.5	60
88	Attending to the parts of a single object: Part-based selection limitations. Perception & Psychophysics, 2001, 63, 308-321.	2.3	58
89	Normal binocular rivalry in autism: Implications for the excitation/inhibition imbalance hypothesis. Vision Research, 2013, 77, 59-66.	1.4	58
90	Slowing of reaction time in Parkinsons disease: theinvolvement of the frontal lobes. Neuropsychologia, 1999, 37, 787-795.	1.6	57

#	Article	IF	CITATIONS
91	Independent representation of parts and the relations between them: Evidence from integrative agnosia Journal of Experimental Psychology: Human Perception and Performance, 2006, 32, 1169-1184.	0.9	57
92	Hemispatial Neglect and Visual Search: A Large Scale Analysis. Cortex, 2004, 40, 247-263.	2.4	56
93	Atypical development of face and greeble recognition in autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2008, 49, 838-847.	5.2	56
94	The role of color in object recognition: Evidence from visual agnosia. Neurocase, 1997, 3, 237-247.	0.6	55
95	Atypical perceptual processing of faces in developmental dyslexia. Brain and Language, 2017, 173, 41-51.	1.6	55
96	The effects of rotation and inversion on face processing in prosopagnosia. Cognitive Neuropsychology, 2002, 19, 31-47.	1.1	54
97	Number reading in pure alexia—A review. Neuropsychologia, 2011, 49, 2283-2298.	1.6	54
98	Three-Dimensional Representations of Objects in Dorsal Cortex are Dissociable from Those in Ventral Cortex. Cerebral Cortex, 2017, 27, 422-434.	2.9	53
99	Do PETS have long or short ears? Mental imagery and neuroimaging. Trends in Neurosciences, 1994, 17, 292-294.	8.6	52
100	Aging and visual search: Generalized cognitive slowing or selective deficit in attention?. Aging, Neuropsychology, and Cognition, 1995, 2, 279-299.	1.3	51
101	Right parietal contributions to verbal working memory: Spatial or executive?. Neuropsychologia, 2005, 43, 2057-2067.	1.6	51
102	Surface Dyslexia in Nonfluent Progressive Aphasia. Brain and Language, 1997, 56, 211-233.	1.6	50
103	Emerging Structure-Function Relations in the Developing Face Processing System. Cerebral Cortex, 2014, 24, 2964-2980.	2.9	50
104	Monocular Advantage for Face Perception Implicates Subcortical Mechanisms in Adult Humans. Journal of Cognitive Neuroscience, 2014, 26, 927-937.	2.3	50
105	Spatiotemporal dynamics of similarity-based neural representations of facial identity. Proceedings of the United States of America, 2017, 114, 388-393.	7.1	50
106	Path Integration Deficits during Linear Locomotion after Human Medial Temporal Lobectomy. Journal of Cognitive Neuroscience, 2004, 16, 510-520.	2.3	49
107	The large-scale organization of shape processing in the ventral and dorsal pathways. ELife, 2017, 6, .	6.0	49
108	Time course of planning for object and action parameters in visually guided manipulation. Visual Cognition, 2002, 9, 502-527.	1.6	48

#	Article	IF	CITATIONS
109	The role of human ventral visual cortex in motion perception. Brain, 2013, 136, 2784-2798.	7.6	48
110	Very high density EEG elucidates spatiotemporal aspects of early visual processing. Scientific Reports, 2017, 7, 16248.	3.3	48
111	Size Precedes View: Developmental Emergence of Invariant Object Representations in Lateral Occipital Complex. Journal of Cognitive Neuroscience, 2015, 27, 474-491.	2.3	47
112	Altered topology of neural circuits in congenital prosopagnosia. ELife, 2017, 6, .	6.0	47
113	Competition between simultaneous stimuli modulated by location probability in hemispatial neglect. Neuropsychologia, 2006, 44, 1050-1060.	1.6	46
114	Feature-based face representations and image reconstruction from behavioral and neural data. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 416-421.	7.1	46
115	Ventral aspect of the visual form pathway is not critical for the perception of biological motion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E361-70.	7.1	44
116	A Neural Basis for Developmental Topographic Disorientation. Journal of Neuroscience, 2015, 35, 12954-12969.	3.6	44
117	Visuoperceptual deficits in letter-by-letter reading?. Neuropsychologia, 2009, 47, 1733-1744.	1.6	43
118	Space-, object-, and feature-based attention interact to organize visual scenes. Attention, Perception, and Psychophysics, 2011, 73, 2434-2447.	1.3	43
119	Animal, but not human, faces engage the distributed face network in adolescents with autism. Developmental Science, 2016, 19, 306-317.	2.4	43
120	Exogenous spatial attention: Evidence for intact functioning in adults with autism spectrum disorder. Journal of Vision, 2013, 13, 9-9.	0.3	42
121	Selective writing impairment: Beyond the allographic code. Aphasiology, 1989, 3, 265-277.	2.2	40
122	Implicit familiarity processing in congenital prosopagnosia. Journal of Neuropsychology, 2008, 2, 141-164.	1.4	40
123	Probing the face-space of individuals with prosopagnosia. Neuropsychologia, 2010, 48, 1828-1841.	1.6	40
124	Individual differences in symptom severity and behavior predict neural activation during face processing in adolescents with autism. NeuroImage: Clinical, 2015, 7, 53-67.	2.7	40
125	The cognitive neuroscience of visual attention. Current Opinion in Neurobiology, 1999, 9, 158-163.	4.2	39
126	Expertise in Tactile Pattern Recognition. Psychological Science, 2003, 14, 480-492.	3.3	39

#	Article	IF	CITATIONS
127	Spatial attention does not require preattentive grouping Neuropsychology, 1997, 11, 30-43.	1.3	38
128	Distinct neural processes for the perception of familiar versus unfamiliar faces along the visual hierarchy revealed by EEG. NeuroImage, 2018, 181, 120-131.	4.2	38
129	Frequency and consistency effects in a pure surface dyslexic patient Journal of Experimental Psychology: Human Perception and Performance, 1997, 23, 1217-1231.	0.9	37
130	Numerosity representation is encoded in human subcortex. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2806-E2815.	7.1	37
131	Treatment of reading impairment after stroke. Current Opinion in Neurology, 2008, 21, 644-648.	3.6	36
132	Impairments in part–whole representations of objects in two cases of integrative visual agnosia. Cognitive Neuropsychology, 2007, 24, 701-730.	1.1	35
133	Endogenous Spatial Attention: Evidence for Intact Functioning in Adults With Autism. Autism Research, 2013, 6, 108-118.	3.8	35
134	Successful Reorganization of Category-Selective Visual Cortex following Occipito-temporal Lobectomy in Childhood. Cell Reports, 2018, 24, 1113-1122.e6.	6.4	35
135	Computational insights into human perceptual expertise for familiar and unfamiliar face recognition. Cognition, 2021, 208, 104341.	2.2	35
136	Hemispatial neglect: its effects on visual perception and visually guided grasping. Neuropsychologia, 2003, 41, 1262-1271.	1.6	33
137	Variable Left-hemisphere Language and Orthographic Lateralization Reduces Right-hemisphere Face Lateralization. Journal of Cognitive Neuroscience, 2015, 27, 913-925.	2.3	32
138	Mechanisms Underlying Spatial Representation Revealed through Studies of Hemispatial Neglect. Journal of Cognitive Neuroscience, 2002, 14, 272-290.	2.3	31
139	Impaired Initiation But Not Execution of Contralesional Saccades in Hemispatial Neglect. Behavioural Neurology, 2002, 13, 39-60.	2.1	31
140	Are Greebles like faces? Using the neuropsychological exception to test the rule. Neuropsychologia, 2004, 42, 1961-1970.	1.6	31
141	Impaired holistic processing of left-right composite faces in congenital prosopagnosia. Frontiers in Human Neuroscience, 2014, 8, 750.	2.0	31
142	Rehabilitation for pure alexia: Efficacy of therapy and implications for models of normal word recognition. Neuropsychological Rehabilitation, 1995, 5, 149-180.	1.6	30
143	Perceptual separability of featural and configural information in congenital prosopagnosia. Cognitive Neuropsychology, 2012, 29, 447-463.	1.1	30
144	A connectivity-constrained computational account of topographic organization in primate high-level visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	30

#	Article	IF	CITATIONS
145	Spatial and temporal influences on extinction. Neuropsychologia, 2002, 40, 2206-2225.	1.6	29
146	Perceptual grouping operates independently of attentional selection: Evidence from hemispatial neglect. Attention, Perception, and Psychophysics, 2010, 72, 607-618.	1.3	29
147	Attentional control: Temporal relationships within the fronto-parietal network. Neuropsychologia, 2012, 50, 1202-1210.	1.6	29
148	Left hemisphere specialization for word reading potentially causes, rather than results from, a left lateralized bias for high spatial frequency visual information. Cortex, 2015, 72, 27-39.	2.4	29
149	Practice Makes Improvement: How Adults with Autism Out-Perform Others in a Naturalistic Visual Search Task. Journal of Autism and Developmental Disorders, 2013, 43, 2259-2268.	2.7	28
150	Vision as a Beachhead. Biological Psychiatry, 2017, 81, 832-837.	1.3	28
151	The space of an object: Object attention alters the spatial gradient in the surround Journal of Experimental Psychology: Human Perception and Performance, 2008, 34, 298-309.	0.9	27
152	Differential sensory fMRI signatures in autism and schizophrenia: Analysis of amplitude and trial-to-trial variability. Schizophrenia Research, 2016, 175, 12-19.	2.0	27
153	Overâ€Responsiveness and Greater Variability in Roughness Perception in Autism. Autism Research, 2016, 9, 393-402.	3.8	27
154	Hemispheric organization in disorders of development. Visual Cognition, 2017, 25, 416-429.	1.6	27
155	Patient Schn: has Goldstein and Gelb's case withstood the test of time?. Neuropsychologia, 2004, 42, 633-638.	1.6	26
156	Controversy in statistical analysis of functional magnetic resonance imaging data. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3368-E3369.	7.1	26
157	How do the blind â€~see'? The role of spontaneous brain activity in self-generated perception. Brain, 2021, 144, 340-353.	7.6	26
158	Visuomotor Processing in Unilateral Neglect. Consciousness and Cognition, 1998, 7, 381-409.	1.5	25
159	Intact spatial updating during locomotion after right posterior parietal lesions. Neuropsychologia, 2000, 38, 950-963.	1.6	25
160	Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Molecular Psychiatry, 2022, 27, 2114-2125.	7.9	25
161	The Dorsal Visual Pathway Represents Object-Centered Spatial Relations for Object Recognition. Journal of Neuroscience, 2022, 42, 4693-4710.	3.6	25
162	Oculographic analysis of word reading in hemispatial neglect. Physiology and Behavior, 2002, 77, 613-619.	2.1	24

#	Article	IF	CITATIONS
163	Impairment of the face processing network in congenital prosopagnosia. Frontiers in Bioscience - Elite, 2014, 6, 236-257.	1.8	24
164	What Does Dorsal Cortex Contribute to Perception?. Open Mind, 2020, 4, 40-56.	1.7	24
165	More than Action: The Dorsal Pathway Contributes to the Perception of 3-D Structure. Journal of Cognitive Neuroscience, 2018, 30, 1047-1058.	2.3	23
166	Phonological Activation in Pure Alexia. Cognitive Neuropsychology, 2001, 18, 697-727.	1.1	22
167	Updating of locations during whole-body rotations in patients with hemispatial neglect. Cognitive, Affective and Behavioral Neuroscience, 2001, 1, 330-343.	2.0	22
168	The nature of face representations in subcortical regions. Neuropsychologia, 2014, 59, 35-46.	1.6	22
169	Cortical Hyperâ€Excitability in Migraine in Response to Chromatic Patterns. Headache, 2019, 59, 1773-1787.	3.9	22
170	Perceptual Function and Category-Selective Neural Organization in Children with Resections of Visual Cortex. Journal of Neuroscience, 2019, 39, 6299-6314.	3.6	22
171	Real-world size coding of solid objects, but not 2-D or 3-D images, in visual agnosia patients with bilateral ventral lesions. Cortex, 2019, 119, 555-568.	2.4	22
172	Pure alexia. Neurocase, 2000, 6, 265-294.	0.6	21
173	Retinotopic information interacts with category selectivity in human ventral cortex. Neuropsychologia, 2016, 92, 90-106.	1.6	21
174	Neural mechanisms of face perception, their emergence over development, and their breakdown. Wiley Interdisciplinary Reviews: Cognitive Science, 2016, 7, 247-263.	2.8	20
175	The evolution of deep dyslexia: evidence for the spontaneous recovery of the semantic reading route. Cognitive Neuropsychology, 1994, 11, 579-611.	1.1	19
176	Attention and Unit Formation: A Biased Competition Account of Object-Based Attention. Advances in Psychology, 2001, 130, 145-180.	0.1	18
177	From word superiority to word inferiority: Visual processing of letters and words in pure alexia. Cognitive Neuropsychology, 2014, 31, 413-436.	1.1	18
178	Spatial Integration in Normal Face Processing and Its Breakdown in Congenital Prosopagnosia. Annual Review of Vision Science, 2021, 7, 301-321.	4.4	18
179	Cued visual attention does not distinguish between occluded and occluding objects. Psychonomic Bulletin and Review, 2001, 8, 496-503.	2.8	17
180	The interaction of spatial reference frames and hierarchical object representations: Evidence from figure copying in hemispatial neglect. Cognitive, Affective and Behavioral Neuroscience, 2001, 1, 307-329.	2.0	17

#	Article	IF	CITATIONS
181	Pure alexia and covert reading: Evidence from Stroop tasks. Cognitive Neuropsychology, 2004, 21, 443-458.	1.1	17
182	Perceiving parts and shapes from concave surfaces. Attention, Perception, and Psychophysics, 2010, 72, 153-167.	1.3	17
183	Face-Space Architectures. Psychological Science, 2013, 24, 1294-1300.	3.3	17
184	Acquiring long-term representations of visual classes following extensive extrastriate damage. Neuropsychologia, 2006, 44, 799-815.	1.6	16
185	Object width modulates object-based attentional selection. Attention, Perception, and Psychophysics, 2018, 80, 1375-1389.	1.3	16
186	Uncharacteristic Task-Evoked Pupillary Responses Implicate Atypical Locus Ceruleus Activity in Autism. Journal of Neuroscience, 2020, 40, 3815-3826.	3.6	16
187	Change in perception of communication abilities of aphasic patients and their families. Aphasiology, 1995, 9, 565-575.	2.2	15
188	Visuospatial neglect in normal subjects: altered spatial representations induced by a perceptual illusion. Neuropsychologia, 1998, 36, 469-475.	1.6	15
189	Agnosias. Wiley Interdisciplinary Reviews: Cognitive Science, 2010, 1, 203-213.	2.8	15
190	Towards a classification scheme for aphasic syntax. International Journal of Language and Communication Disorders, 1986, 21, 21-38.	1.5	14
191	Word and face processing engage overlapping distributed networks: Evidence from RSVP and EEG investigations Journal of Experimental Psychology: General, 2017, 146, 943-961.	2.1	14
192	Asymmetrical perception of body rotation after unilateral injury to human vestibular cortex. Neuropsychologia, 2006, 44, 1878-1890.	1.6	13
193	Visual attention deficits in Alzheimer's disease: Relationship to HMPAO SPECT cortical hypoperfusion. Neuropsychologia, 2011, 49, 1741-1750.	1.6	13
194	Attentional dynamics mediated by subcortical mechanisms. Attention, Perception, and Psychophysics, 2014, 76, 2375-2388.	1.3	13
195	No difference in cross-modal attention or sensory discrimination thresholds in autism and matched controls. Vision Research, 2016, 121, 85-94.	1.4	13
196	Functional outcomes following lesions in visual cortex: Implications for plasticity of high-level vision. Neuropsychologia, 2017, 105, 197-214.	1.6	13
197	Object complexity modulates the association between action and perception in childhood. Journal of Experimental Child Psychology, 2019, 179, 56-72.	1.4	13
198	Multimodal evidence on shape and surface information in individual face processing. NeuroImage, 2019, 184, 813-825.	4.2	13

#	Article	IF	CITATIONS
199	The Face of Image Reconstruction: Progress, Pitfalls, Prospects. Trends in Cognitive Sciences, 2020, 24, 747-759.	7.8	13
200	White matter structure in schizophrenia and autism: Abnormal diffusion across the brain in schizophrenia. Neuropsychologia, 2019, 135, 107233.	1.6	12
201	Temporal Dynamics of Shape Processing Differentiate Contributions of Dorsal and Ventral Visual Pathways. Journal of Cognitive Neuroscience, 2019, 31, 821-836.	2.3	12
202	Occlusion, symmetry, and object-based attention: Reply to Saiki (2000) Journal of Experimental Psychology: Human Perception and Performance, 2000, 26, 1497-1505.	0.9	11
203	Response to Susilo and Duchaine: beyond neuropsychological dissociations in understanding face and word representations. Trends in Cognitive Sciences, 2013, 17, 546.	7.8	11
204	The life-span trajectory of visual perception of 3D objects. Scientific Reports, 2017, 7, 11034.	3.3	11
205	A mirror up to nature. Current Biology, 2008, 18, 233.	3.9	10
206	Co-analysis of Brain Structure and Function using fMRI and Diffusion-weighted Imaging. Journal of Visualized Experiments, 2012, , .	0.3	10
207	Sensory Processing in Autism. Key Issues in Mental Health, 0, , 54-67.	0.6	10
208	Common Dorsal Stream Substrates for the Mapping of Surface Texture to Object Parts and Visual Spatial Processing. Journal of Cognitive Neuroscience, 2015, 27, 2442-2461.	2.3	10
209	Altered large-scale organization of shape processing in visual agnosia. Cortex, 2020, 129, 423-435.	2.4	10
210	Abnormalities in cortical pattern of coherence in migraine detected using ultra high-density EEG. Brain Communications, 2021, 3, fcab061.	3.3	10
211	Changes in Cortical Coherence Supporting Complex Visual and Social Processing in Adolescence. Journal of Cognitive Neuroscience, 2021, 33, 2215-2230.	2.3	10
212	Spatial attention in the mental architecture: Evidence from neuropsychology. Journal of Clinical and Experimental Neuropsychology, 1995, 17, 220-242.	1.3	9
213	Unique N170 signatures to words and faces in deaf ASL signers reflect experience-specific adaptations during early visual processing. Neuropsychologia, 2020, 141, 107414.	1.6	9
214	Neural silences can be localized rapidly using noninvasive scalp EEG. Communications Biology, 2021, 4, 429.	4.4	9
215	The effects of visual search efficiency on object-based attention. Attention, Perception, and Psychophysics, 2015, 77, 1544-1557.	1.3	8
216	The whole is greater than the sum of the parts: Distributed circuits in visual cognition. Cortex, 2015, 72, 1-4.	2.4	8

#	Article	IF	CITATIONS
217	Effects of unilateral cortical resection of the visual cortex on bilateral human white matter. NeuroImage, 2020, 207, 116345.	4.2	8
218	Over time, the right results will emerge. Cognitive Neuropsychology, 2018, 35, 102-111.	1.1	7
219	Exemplar learning reveals the representational origins of expert category perception. Proceedings of the United States of America, 2020, 117, 11167-11177.	7.1	7
220	Deep learning of shared perceptual representations for familiar and unfamiliar faces: Reply to commentaries. Cognition, 2021, 208, 104484.	2.2	7
221	Word and line bisection in typical and impaired readers and a cross-language comparison. Brain and Language, 2015, 150, 143-152.	1.6	6
222	Subcortical Facilitation of Behavioral Responses to Threat. Scientific Reports, 2017, 7, 13087.	3.3	6
223	Protracted Developmental Trajectory of Shape Processing along the Two Visual Pathways. Journal of Cognitive Neuroscience, 2019, 31, 1589-1597.	2.3	6
224	Minimal Recognizable Configurations Elicit Category-selective Responses in Higher Order Visual Cortex. Journal of Cognitive Neuroscience, 2019, 31, 1354-1367.	2.3	6
225	Hyper-Sensitivity to Pitch and Poorer Prosody Processing in Adults With Autism: An ERP Study. Frontiers in Psychiatry, 2022, 13, .	2.6	6
226	Correlations between the fMRI BOLD Signal and Visual Perception. Neuron, 2002, 34, 495-497.	8.1	5
227	The Role of Color in Object Recognition: Evidence from Visual Agnosia. Neurocase, 1997, 3, 237-247.	0.6	5
228	Face perception: computational insights from phylogeny. Trends in Cognitive Sciences, 2022, 26, 350-363.	7.8	5
229	Holistic processing for left–right composite faces in Chinese and Caucasian observers. Visual Cognition, 2014, 22, 1050-1071.	1.6	4
230	Trialâ€toâ€1rial Variability in Electrodermal Activity to Odor in Autism. Autism Research, 2020, 13, 2083-2093.	3.8	4
231	Large-scale resculpting of cortical circuits in childrenÂafter surgical resection. Scientific Reports, 2020, 10, 21589.	3.3	4
232	Neuropsychological Approaches to Perceptual OrganizationEvidence from Visual Agnosia. , 2006, , 295-334.		4
233	Knowledge gaps for functional outcomes after multilobar resective and disconnective pediatric epilepsy surgery: Conference Proceedings of the Patientâ€Centered Stakeholder Meeting 2019. Epileptic Disorders, 2022, 24, 50-66.	1.3	4
234	Recovery of signal loss due to an in-plane susceptibility gradient in the gradient echo EPI through acquisition of extended phase-encoding lines. Magnetic Resonance Imaging, 2010, 28, 777-783.	1.8	3

#	Article	IF	CITATIONS
235	The representation of women in cognition. Cognition, 2015, 141, 170-171.	2.2	3
236	Differentiation of Types of Visual Agnosia Using EEG. Vision (Switzerland), 2018, 2, 44.	1.2	3
237	Subcortical regions of the human visual system do not process faces holistically. Brain and Cognition, 2021, 151, 105726.	1.8	3
238	Altered functional connectivity in the core and extended face-processing network in adolescents with autism. Journal of Vision, 2015, 15, 1209.	0.3	3
239	Assessing the similarity of cortical object and scene representations through cross-validated voxel encoding models. Journal of Vision, 2019, 19, 188d.	0.3	3
240	Unilateral resection of both cortical visual pathways in a pediatric patient alters action but not perception. Neuropsychologia, 2022, 168, 108182.	1.6	3
241	Hemispatial Neglect, Neural Basis of. , 2015, , 766-772.		2
242	Response: Commentary: Perceptual learning in autism: over-specificity and possible remedies. Frontiers in Integrative Neuroscience, 2016, 10, 36.	2.1	2
243	The Brain as Muse: Bridging Art and Neuroscience. Leonardo, 2017, 50, 190-191.	0.3	2
244	Acquisition of Long-Term Visual Representations: Psychological and Neural Mechanisms. , 2005, , 11-35.		2
245	Altered Visual Processing in Migraine Not Associated with Auditory Abnormalities. Journal of Vision, 2019, 19, 275.	0.3	2
246	The large-scale organization of object processing in the ventral and dorsal pathways. Journal of Vision, 2017, 17, 286.	0.3	2
247	Selective Visual Attention and Visual Search: Behavioral and Neural Mechanisms. Psychology of Learning and Motivation - Advances in Research and Theory, 2003, , 157-191.	1.1	1
248	Representing faces in 3D. Nature Human Behaviour, 2019, 3, 776-777.	12.0	1
249	Colour blindness adversely impacts face recognition. Visual Cognition, 2020, 28, 279-284.	1.6	1
250	Impairments in Face Perception. , 2011, , .		1
251	Intact implicit representation of object 3D structure in object agnosia. Journal of Vision, 2015, 15, 1099.	0.3	1
252	The developing ventral visual pathway in a young patient following right posterior hemispherectomy. Journal of Vision, 2016, 16, 1122.	0.3	1

#	Article	IF	CITATIONS
253	Are all visual objects created equal?. Journal of Vision, 2017, 17, 1223.	0.3	1
254	Pure Alexia. Neurocase, 2000, 6, 265-266.	0.6	1
255	Cognitive Neuroscience. Trends in Cognitive Sciences, 1998, 2, 269.	7.8	Ο
256	Acquisition and Disruption of Category Specificity in the Ventral Visual Stream: The Case of Late Developing and Vulnerable Face-Related Cortex. , 0, , 348-368.		0
257	Conscious awareness of methodological choices: A reply to Milberg and McGlinchey (2010). Attention, Perception, and Psychophysics, 2010, 72, 622-627.	1.3	0
258	The Rumelhart Prize at 10. Cognitive Science, 2010, 34, 713-715.	1.7	0
259	Investigating distributed functional connectivity during word and nonword visual recognition. Journal of Vision, 2021, 21, 2992.	0.3	0
260	Developing topographic visual domain organization in a recurrent neural network with biological constraints. Journal of Vision, 2021, 21, 2767.	0.3	0
261	Repetition suppression to visual stimuli following pediatric occipitotemporal cortical resection. Journal of Vision, 2021, 21, 2728.	0.3	0
262	Spatial representation and updating: Evidence from neuropsychological investigations. Lecture Notes in Computer Science, 2001, , 352-370.	1.3	0
263	Recognition of Faces versus Greebles: A Case Study in Model Selection. Lecture Notes in Statistics, 2002, , 91-133.	0.2	0
264	Congenital and Acquired Prosopagnosia: Flip Sides of the Same Coin?. , 2009, , 167-196.		0
265	Axial Diffusivity in the ILF and IFOF is Related to Autism Symptom Severity. Journal of Vision, 2015, 15, 639.	0.3	0
266	Visualizing the Spatiotemporal Dynamics of Neural Representations of Individual Face Identities. Journal of Vision, 2015, 15, 201.	0.3	0
267	Reverse engineering the face perception system: insights from congenital prosopagnosia. Journal of Vision, 2015, 15, 1409.	0.3	0
268	The reorganization of extrastriate cortex in patients with lobectomy. Journal of Vision, 2015, 15, 434.	0.3	0
269	Facial identity encoding, face space structure and neural-based image reconstruction in congenital prosopagnosia Journal of Vision, 2016, 16, 1234.	0.3	0
270	Face processing interferes with word identification during rapid serial visual presentation. Journal of Vision, 2016, 16, 952.	0.3	0

#	Article	IF	CITATIONS
271	Hemispheric Organization in Congenital Prosopagnosia: The N170 in Words and Faces. Journal of Vision, 2016, 16, 380.	0.3	0
272	Object 3D structure representation is immature in late childhood. Journal of Vision, 2016, 16, 775.	0.3	0
273	Facial image reconstruction: a multimodal neuroimaging and behavioral investigation. Journal of Vision, 2016, 16, 384.	0.3	0
274	The Effect of Object Size in Object-Based Attentional Selection. Journal of Vision, 2017, 17, 1337.	0.3	0
275	Number in the human subcortex. Journal of Vision, 2017, 17, 480.	0.3	0
276	Minimal Recognizable Configurations (MIRCs) elicit category selective responses in high order visual cortex. Journal of Vision, 2018, 18, 407.	0.3	0
277	Greeble Training in Adolescents Increases Neural Activation in the FFA. Journal of Vision, 2018, 18, 562.	0.3	0
278	Distinct neural processes for the perception of familiar versus unfamiliar faces along the visual hierarchy revealed by frequency tagging. Journal of Vision, 2018, 18, 1235.	0.3	0
279	Cortical organization as optimization. Journal of Vision, 2020, 20, 1683.	0.3	0
280	The temporal dynamics of information integration within and across the hemispheres. Journal of Vision, 2020, 20, 1016.	0.3	0
281	Stable visual discrimination behaviors in hemispherectomy patients. Journal of Vision, 2020, 20, 1188.	0.3	0
282	P153. Comparison of Trial-To-Trial Variability in Autism and Schizophrenia. Biological Psychiatry, 2022, 91, S148.	1.3	0