
James C Phillips

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4221555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase transitions may explain why SARS-CoV-2 spreads so fast and why new variants are spreading faster. Physica A: Statistical Mechanics and Its Applications, 2022, 598, 127318.	2.6	2
2	Darwinian Evolution of Intelligence. Frontiers in Bioinformatics, 2022, 2, .	2.1	0
3	Synchronized attachment and the Darwinian evolution of coronaviruses CoV-1 and CoV-2. Physica A: Statistical Mechanics and Its Applications, 2021, 581, 126202.	2.6	5
4	Ted Geballe and HTSC. Journal of Superconductivity and Novel Magnetism, 2020, 33, 11-13.	1.8	2
5	Reply to Koonin et al.: Evolution of proteins is Darwinian. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19641-19642.	7.1	0
6	Self-organized networks: Darwinian evolution of dynein rings, stalks, and stalk heads. Proceedings of the United States of America, 2020, 117, 7799-7802.	7.1	12
7	Modern discovery in soft-matter physics. Physics Today, 2020, 73, 11-11.	0.3	1
8	Why AÎ ² 42 Is Much More Toxic than AÎ ² 40. ACS Chemical Neuroscience, 2019, 10, 2843-2847.	3.5	22
9	Hydropathic wave ordering of alpha crystallin—Membrane interactions enhances human lens transparency and resists cataracts. Physica A: Statistical Mechanics and Its Applications, 2019, 514, 573-579.	2.6	2
10	Why human milk is more nutritious than cow milk. Physica A: Statistical Mechanics and Its Applications, 2018, 497, 302-309.	2.6	0
11	Configuration interaction of hydropathic waves enables ubiquitin functionality. Physica A: Statistical Mechanics and Its Applications, 2018, 491, 377-381.	2.6	0
12	Thermodynamic Scaling of Interfering Hemoglobin Strain Field Waves. Journal of Physical Chemistry B, 2018, 122, 9324-9330.	2.6	5
13	Hidden thermodynamic information in protein amino acid mutation tables. Physica A: Statistical Mechanics and Its Applications, 2017, 469, 676-680.	2.6	1
14	Autoantibody recognition mechanisms of MUC1. Physica A: Statistical Mechanics and Its Applications, 2017, 469, 244-249.	2.6	1
15	Prediction (early recognition) of emerging flu strain clusters. Physica A: Statistical Mechanics and Its Applications, 2017, 479, 371-378.	2.6	1
16	Giant hub Src and Syk tyrosine kinase thermodynamic profiles recapitulate evolution. Physica A: Statistical Mechanics and Its Applications, 2017, 483, 330-336.	2.6	2
17	Evolution of the ubiquitin-activating enzyme Uba1 (E1). Physica A: Statistical Mechanics and Its Applications, 2017, 483, 456-461.	2.6	8
18	Revealing the Effect of Irradiation on Cement Hydrates: Evidence of a Topological Self-Organization. ACS Applied Materials & Interfaces, 2017, 9, 32377-32385.	8.0	40

#	Article	IF	CITATIONS
19	Why Ubiquitin Has Not Evolved. International Journal of Molecular Sciences, 2017, 18, 1995.	4.1	3
20	Bioinformatic scaling of allosteric interactions in biomedical isozymes. Physica A: Statistical Mechanics and Its Applications, 2016, 457, 289-294.	2.6	0
21	Oxygen channels and fractal wave–particle duality in the evolution of myoglobin and neuroglobin. Physica A: Statistical Mechanics and Its Applications, 2016, 463, 1-11.	2.6	5
22	Vaccine escape in 2013–4 and the hydropathic evolution of glycoproteins of A/H3N2 viruses. Physica A: Statistical Mechanics and Its Applications, 2016, 455, 38-43.	2.6	1
23	Autoantibody recognition mechanisms of p53 epitopes. Physica A: Statistical Mechanics and Its Applications, 2016, 451, 162-170.	2.6	3
24	Proteinquakes in the Evolution of Influenza Virus Hemagglutinin (A/H1N1) under Opposing Migration and Vaccination Pressures. BioMed Research International, 2015, 2015, 1-9.	1.9	0
25	Phase transitions in the web of science. Physica A: Statistical Mechanics and Its Applications, 2015, 428, 173-177.	2.6	4
26	Similarity is not enough: Tipping points of Ebola Zaire mortalities. Physica A: Statistical Mechanics and Its Applications, 2015, 427, 277-281.	2.6	3
27	Thermodynamic Description of Beta Amyloid Formation Using Physicochemical Scales and Fractal Bioinformatic Scales. ACS Chemical Neuroscience, 2015, 6, 745-750.	3.5	11
28	Fractals and self-organized criticality in anti-inflammatory drugs. Physica A: Statistical Mechanics and Its Applications, 2014, 415, 538-543.	2.6	9
29	Fractals and self-organized criticality in proteins. Physica A: Statistical Mechanics and Its Applications, 2014, 415, 440-448.	2.6	32
30	Punctuated Evolution of Influenza Virus Neuraminidase (A/H1N1) under Opposing Migration and Vaccination Pressures. BioMed Research International, 2014, 2014, 1-14.	1.9	6
31	Ineluctable Complexity of High Temperature Superconductivity Elucidated. Journal of Superconductivity and Novel Magnetism, 2014, 27, 345-347.	1.8	12
32	Self-organized criticality and color vision: A guide to water–protein landscape evolution. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 468-473.	2.6	10
33	Self-organized criticality in proteins: Hydropathic roughening profiles of G-protein-coupled receptors. Physical Review E, 2013, 87, .	2.1	6
34	A note on compacted networks. Physics Today, 2013, 66, 10-11.	0.3	9
35	Hydropathic Self-Organized Criticality: A Magic Wand for Protein Physics. Protein and Peptide Letters, 2012, 19, 1089-1093.	0.9	15
36	Bifurcation of stretched exponential relaxation in microscopically homogeneous glasses. Journal of Non-Crystalline Solids, 2012, 358, 893-897.	3.1	33

#	Article	IF	CITATIONS
37	Frequency–rank correlations of rhodopsin mutations with tuned hydropathic roughness based on self-organized criticality. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 5473-5478.	2.6	6
38	Diffusion of knowledge and globalization in the web of twentieth century science. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 3995-4003.	2.6	13
39	Microscopic aspects of Stretched Exponential Relaxation (SER) in homogeneous molecular and network glasses and polymers. Journal of Non-Crystalline Solids, 2011, 357, 3853-3865.	3.1	47
40	Internal stresses and formation of switchable nanowires at thin silica film edges. Journal of Applied Physics, 2011, 109, 034312.	2.5	1
41	Hard-Wired Dopant Networks and the Prediction ofÂHigh Transition Temperatures in Ceramic Superconductors. Journal of Superconductivity and Novel Magnetism, 2010, 23, 1267-1279.	1.8	4
42	A microscopic bonding model for the compositional dependence of the first sharp diffraction peak (FSDP) in GexSe1-xalloys. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	0
43	Hard-Wired Dopant Networks and the Prediction of High Transition Temperatures in Ceramic Superconductors. Advances in Condensed Matter Physics, 2010, 2010, 1-13.	1.1	5
44	Percolative theories of strongly disordered ceramic high-temperature superconductors. Proceedings of the United States of America, 2010, 107, 1307-1310.	7.1	21
45	Chemical Bonding Self-Organizations and Percolation Theory Applied to Minimization of Macroscopic Strain: Internal Interfaces in Non-Crystalline and Nano-Crystalline Thin Films. E-Journal of Surface Science and Nanotechnology, 2009, 7, 375-380.	0.4	2
46	Scaling and self-organized criticality in proteins I. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3107-3112.	7.1	32
47	Universal non-Landau, self-organized, lattice disordering percolative dopant network sub-T _c phase transition in ceramic superconductors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15534-15537.	7.1	4
48	Scaling and self-organized criticality in proteins II. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3113-3118.	7.1	23
49	Microscopic description of strainâ€reducing chemical bonding selfâ€organizations in nonâ€crystalline alloys. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 885-891.	1.8	Ο
50	High temperature cuprate-like superconductivity. Chemical Physics Letters, 2009, 473, 274-278.	2.6	8
51	Scaling and self-organized criticality in proteins: Lysozyme <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>c</mml:mi>. Physical Review E, 2009, 80, 051916.</mml:math 	2.1	40
52	Is there a lowest upper bound for superconductive transition temperatures?. Chemical Physics Letters, 2008, 451, 98-101.	2.6	4
53	A stringent test for hydrophobicity scales: Two proteins with 88% sequence identity but different structure and function. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9233-9237.	7.1	18
54	Quantum percolation in cuprate high-temperature superconductors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9917-9919.	7.1	15

#	Article	IF	CITATIONS
55	Structure and function of window glass and Pyrex. Journal of Chemical Physics, 2008, 128, 174506.	3.0	25
56	Nanostructural model of metal-insulator transition in layeredLixZrNClsuperconductors. Physical Review B, 2008, 77, .	3.2	4
57	Is there a lowest upper bound for superconductive transition temperatures?. Journal of Physics: Conference Series, 2008, 108, 012033.	0.4	2
58	Hierarchical space-filling in network and molecular glasses. Journal of Physics Condensed Matter, 2007, 19, 455213.	1.8	2
59	Self-organized networks and lattice effects in high-temperature superconductors. Physical Review B, 2007, 75, .	3.2	36
60	A new class of intermediate phases in non-crystalline films based on a confluent double percolation mechanism. Journal of Physics Condensed Matter, 2007, 19, 455219.	1.8	12
61	Onset of rigidity in glasses: From random to self-organized networks. Journal of Non-Crystalline Solids, 2007, 353, 1732-1740.	3.1	63
62	Chemical self-organization length scales in non- and nano-crystalline thin films. Solid-State Electronics, 2007, 51, 1308-1318.	1.4	2
63	Slow dynamics in glasses: A comparison between theory and experiment. Physical Review B, 2006, 73, .	3.2	38
64	Ideally glassy hydrogen-bonded networks. Physical Review B, 2006, 73, .	3.2	20
65	Superconductive excitations and the infrared vibronic spectra of BSCCO. Physica Status Solidi (B): Basic Research, 2005, 242, 51-57.	1.5	5
66	Topological theory of electron-phonon interactions in high-temperature superconductors. Physical Review B, 2005, 71, .	3.2	15
67	Self-organization and the physics of glassy networks. Philosophical Magazine, 2005, 85, 3823-3838.	1.6	149
68	Why are cuprates the only high-temperature superconductors?. Philosophical Magazine, 2005, 85, 931-947.	1.6	4
69	Topological derivation of shape exponents for stretched exponential relaxation. Journal of Chemical Physics, 2005, 122, 074510.	3.0	69
70	Microscopic origin of collective exponentially small resistance states. Solid State Communications, 2003, 127, 233-236.	1.9	23
71	Network topology and dispersive kinks observed by high-resolution photoemission spectroscopy in cuprate high-temperature superconductors. Philosophical Magazine, 2003, 83, 1949-1962.	1.6	2
72	Nanoscopic filters as the origin of d-wave energy gaps. Philosophical Magazine, 2003, 83, 3255-3265.	1.6	4

#	Article	IF	CITATIONS
73	Phillips Replies:. Physical Review Letters, 2003, 90, .	7.8	1
74	Network topology and subgap resonances observed by Fourier transform scanning tunnelling microscopy of cuprate high-temperature superconductors. Philosophical Magazine, 2003, 83, 3267-3281.	1.6	3
75	Rings and rigidity transitions in network glasses. Physical Review B, 2003, 67, .	3.2	132
76	Pseudogaps, dopants, and strong disorder in cuprate high-temperature superconductors. Reports on Progress in Physics, 2003, 66, 2111-2182.	20.1	77
77	Percolative model of nanoscale phase separation in high-temperature superconductors. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 783-790.	0.6	6
78	Electron-phonon interactions cause high-temperature superconductivity. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 931-942.	0.6	5
79	Zigzag filamentary theory of broken symmetry of neutron and infrared vibronic spectra of YBa2Cu3O6+x. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 1163-1200.	0.6	3
80	Filamentary model of vibronic spectra of YBa2Cu3O6.95. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 1703-1714.	0.6	0
81	Universal Intermediate Phases of Dilute Electronic and Molecular Glasses. Physical Review Letters, 2002, 88, 216401.	7.8	63
82	Universal Intermediate Phases and Nanostructures of High-Temperature Superconductors. Journal of Superconductivity and Novel Magnetism, 2002, 15, 393-398.	0.5	3
83	Electron-phonon interactions cause high-temperature superconductivity. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 931-942.	0.6	4
84	Fractal nature and scaling exponents of non-Drude currents in non-Fermi liquids. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2001, 81, 757-770.	0.6	3
85	Zigzag filamentary theory of longitudinal optical phonons in high-temperature superconductors. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2001, 81, 35-53.	0.6	12
86	Nanodomain structure and function of high-temperature superconductors. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2001, 81, 745-756.	0.6	19
87	Quantitative principles of silicate glass chemistry. Solid State Communications, 2000, 117, 47-51.	1.9	77
88	Allometric scaling in evolutionary biology: Implications for the metal-insulator and network glass stiffness transitions and high-temperature superconductivity, and the converse. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 1773-1787.	0.6	7
89	Self-organization in network glasses. Journal of Non-Crystalline Solids, 2000, 266-269, 859-866.	3.1	243
90	Is there an ideal phase diagram for high-temperature superconductors?. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 527-536.	0.6	10

#	Article	IF	CITATIONS
91	Nature and scaling properties of the intermediate phase of the impurity band metal–insulator transition. Solid State Communications, 1999, 109, 301-304.	1.9	22
92	Stretched exponential relaxation in molecular and electronic glasses. Reports on Progress in Physics, 1996, 59, 1133-1207.	20.1	798
93	Anomalous glass transitions and stretched exponential relaxation in fused salts and polar organic compounds. Physical Review E, 1996, 53, 1732-1739.	2.1	7
94	Coherent resonant pinning, oxygen ordering, and high-temperature superconductivity in the multilayer cuprates. Physical Review Letters, 1994, 72, 3863-3866.	7.8	22
95	Global multinary structural chemistry of stable quasicrystals, high-TCferroelectrics, and high-Tcsuperconductors. Physical Review B, 1992, 45, 7650-7676.	3.2	69
96	Quantum percolation and lattice instabilities in high-Tccuprate superconductors. Physical Review B, 1989, 40, 8774-8779.	3.2	18
97	Direct evidence for the quantum interlayer defect-assisted percolation model of cuprate high-Tcsuperconductivity. Physical Review B, 1989, 39, 7356-7358.	3.2	25
98	Giant defect-enhanced electron-phonon interactions in ternary copper oxide superconductors. Physical Review Letters, 1987, 59, 1856-1859.	7.8	87
99	Topology of covalent non-crystalline solids II: Medium-range order in chalcogenide alloys and Aî—,Si(Ge). Journal of Non-Crystalline Solids, 1981, 43, 37-77.	3.1	753
100	Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys. Journal of Non-Crystalline Solids, 1979, 34, 153-181.	3.1	1,758
101	A new approach to gate stack integrity based on mechanical and electrostatic strain relief in self-organized interfacial suboxide transition regions. , 0, , .		0
102	Suppression of chemical phase separation in high-k zirconium an hafnium nitro-silicate and alumino-silicate alloys for CMOS applications. , 0, , .		0