List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/42215/publications.pdf Version: 2024-02-01

Εενομλο Ζηλνο

#	Article	IF	CITATIONS
1	Advances in morphology control of organic semiconductor enabled organic transistor-based chemical sensors. Molecular Systems Design and Engineering, 2022, 7, 553-568.	3.4	6
2	Hierarchical Heterojunction Enhanced Photodoping of Polymeric Semiconductor for Photodetection and Photothermoelectric Applications. , 2022, 4, 815-822.		5
3	Natural Material Inspired Organic Thin-Film Transistors for Biosensing: Properties and Applications. , 2022, 4, 918-937.		17
4	Role of Interfacial Interactions in the Graphene-Directed Assembly of Monolayer Conjugated Polymers. Langmuir, 2022, 38, 6984-6995.	3.5	2
5	An Oligonucleotideâ€Distortionâ€Responsive Organic Transistor for Platinumâ€Drugâ€Induced DNAâ€Damage Detection. Advanced Materials, 2021, 33, e2100489.	21.0	10
6	Advances in organic thermoelectric materials and devices for smart applications. SmartMat, 2021, 2, 426-445.	10.7	62
7	Ionâ€Gating Engineering of Organic Semiconductors toward Multifunctional Devices. Advanced Functional Materials, 2021, 31, 2102149.	14.9	13
8	An organic transistor with light intensity-dependent active photoadaptation. Nature Electronics, 2021, 4, 522-529.	26.0	83
9	Electronic structure engineering in organic thermoelectric materials. Journal of Energy Chemistry, 2021, 62, 204-219.	12.9	30
10	Vapor-induced marangoni coating for organic functional films. Journal of Materials Chemistry C, 2021, 9, 17518-17525.	5.5	9
11	Inside Front Cover: Volume 2 Issue 4. SmartMat, 2021, 2, .	10.7	0
12	Super―and Ferroelastic Organic Semiconductors for Ultraflexible Singleâ€Crystal Electronics. Angewandte Chemie, 2020, 132, 13104-13112.	2.0	9
13	Orientationâ€Dependent Host–Dopant Interactions for Manipulating Charge Transport in Conjugated Polymers. Advanced Materials, 2020, 32, e2002823.	21.0	20
14	Enhanced Thermoelectric Performance of nâ€Type Organic Semiconductor via Electric Field Modulated Photoâ€Thermoelectric Effect. Advanced Materials, 2020, 32, e2000273.	21.0	31
15	Lyotropic Liquid Crystalline Mesophase Governs Interfacial Molecular Orientation of Conjugated Polymer Thin Films. Chemistry of Materials, 2020, 32, 6043-6054.	6.7	17
16	Exploring Thermoelectric Materials from High Mobility Organic Semiconductors. Chemistry of Materials, 2020, 32, 2688-2702.	6.7	82
17	Printing 2D Conjugated Polymer Monolayers and Their Distinct Electronic Properties. Advanced Functional Materials, 2020, 30, 1909787.	14.9	20
18	Super―and Ferroelastic Organic Semiconductors for Ultraflexible Singleâ€Crystal Electronics. Angewandte Chemie - International Edition, 2020, 59, 13004-13012.	13.8	39

#	Article	IF	CITATIONS
19	Seleniumâ€Substituted Diketopyrrolopyrrole Polymer for Highâ€Performance pâ€Type Organic Thermoelectric Materials. Angewandte Chemie - International Edition, 2019, 58, 18994-18999.	13.8	136
20	Seleniumâ€Substituted Diketopyrrolopyrrole Polymer for Highâ€Performance pâ€Type Organic Thermoelectric Materials. Angewandte Chemie, 2019, 131, 19170-19175.	2.0	18
21	Repurposing DNA-binding agents as H-bonded organic semiconductors. Nature Communications, 2019, 10, 4217.	12.8	28
22	Ion Gel Dynamic Templates for Large Modulation of Morphology and Charge Transport Properties of Solution-Coated Conjugated Polymer Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 22561-22574.	8.0	12
23	A Flexible Selfâ€Powered Sensing Element with Integrated Organic Thermoelectric Generator. Advanced Materials Technologies, 2019, 4, 1900247.	5.8	64
24	Enabling Multifunctional Organic Transistors with Fine-Tuned Charge Transport. Accounts of Chemical Research, 2019, 52, 1113-1124.	15.6	41
25	Solution Coating of Pharmaceutical Nanothin Films and Multilayer Nanocomposites with Controlled Morphology and Polymorphism. ACS Applied Materials & Interfaces, 2018, 10, 10480-10489.	8.0	15
26	Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors. Nature Communications, 2018, 9, 278.	12.8	90
27	Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films. Langmuir, 2018, 34, 1109-1122.	3.5	62
28	Understanding Film-To-Stripe Transition of Conjugated Polymers Driven by Meniscus Instability. ACS Applied Materials & Interfaces, 2018, 10, 40692-40701.	8.0	17
29	Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors. Advanced Materials, 2017, 29, 1700411.	21.0	51
30	Solutionâ€Processed Nanoporous Organic Semiconductor Thin Films: Toward Health and Environmental Monitoring of Volatile Markers. Advanced Functional Materials, 2017, 27, 1701117.	14.9	127
31	Thin Films: Solutionâ€Processed Nanoporous Organic Semiconductor Thin Films: Toward Health and Environmental Monitoring of Volatile Markers (Adv. Funct. Mater. 23/2017). Advanced Functional Materials, 2017, 27, .	14.9	0
32	Understanding Interfacial Alignment in Solution Coated Conjugated Polymer Thin Films. ACS Applied Materials & Interfaces, 2017, 9, 27863-27874.	8.0	42
33	Conjugated-Backbone Effect of Organic Small Molecules for n-Type Thermoelectric Materials with ZT over 0.2. Journal of the American Chemical Society, 2017, 139, 13013-13023.	13.7	215
34	Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films. Nature Communications, 2017, 8, 16070.	12.8	78
35	Organic Electronics: Pursuing Highâ€Mobility nâ€Type Organic Semiconductors by Combination of "Moleculeâ€Framework―and "Sideâ€Chain―Engineering (Adv. Mater. 38/2016). Advanced Materials, 2 8455-8455.	201261,028,	0
36	Pursuing Highâ€Mobility nâ€Type Organic Semiconductors by Combination of "Moleculeâ€Framework―and "Sideâ€Chain―Engineering. Advanced Materials, 2016, 28, 8456-8462.	[]] 21.0	93

#	Article	IF	CITATIONS
37	Flexible nâ€Type Highâ€Performance Thermoelectric Thin Films of Poly(nickelâ€ethylenetetrathiolate) Prepared by an Electrochemical Method. Advanced Materials, 2016, 28, 3351-3358.	21.0	206
38	Sensitive Flexible Magnetic Sensors using Organic Transistors with Magneticâ€Functionalized Suspended Gate Electrodes. Advanced Materials, 2015, 27, 7979-7985.	21.0	52
39	Toward High Performance <i>n</i> -Type Thermoelectric Materials by Rational Modification of BDPPV Backbones. Journal of the American Chemical Society, 2015, 137, 6979-6982.	13.7	345
40	n-Type thermoelectric materials based on CuTCNQ nanocrystals and CuTCNQ nanorod arrays. Journal of Materials Chemistry A, 2015, 3, 2677-2683.	10.3	25
41	A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nature Communications, 2015, 6, 7408.	12.8	609
42	Interface-Located Photothermoelectric Effect of Organic Thermoelectric Materials in Enabling NIR Detection. ACS Applied Materials & Interfaces, 2015, 7, 8968-8973.	8.0	45
43	Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nature Communications, 2015, 6, 6269.	12.8	473
44	Modulated Thermoelectric Properties of Organic Semiconductors Using Fieldâ€Effect Transistors. Advanced Functional Materials, 2015, 25, 3004-3012.	14.9	94
45	Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nature Communications, 2015, 6, 8356.	12.8	453
46	Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons, 2015, 2, 140-156.	12.2	995
47	Specific and Reproducible Gas Sensors Utilizing Gasâ€Phase Chemical Reaction on Organic Transistors. Advanced Materials, 2014, 26, 2862-2867.	21.0	86
48	Naphthalenediimides Fused with 2-(1,3-Dithiol-2-ylidene)acetonitrile: Strong Electron-Deficient Building Blocks for High-Performance n-Type Polymeric Semiconductors. ACS Macro Letters, 2014, 3, 1174-1177.	4.8	39
49	Solution-sheared ultrathin films for highly-sensitive ammonia detection using organic thin-film transistors. Journal of Materials Chemistry C, 2014, 2, 1264.	5.5	60
50	An easily accessible carbon material derived from carbonization of polyacrylonitrile ultrathin films: ambipolar transport properties and application in a CMOS-like inverter. Chemical Communications, 2014, 50, 2374.	4.1	13
51	Effect of Molecular Asymmetry on the Charge Transport Physics of High Mobility n-Type Molecular Semiconductors Investigated by Scanning Kelvin Probe Microscopy. ACS Nano, 2014, 8, 6778-6787.	14.6	16
52	Multiâ€Functional Integration of Organic Fieldâ€Effect Transistors (OFETs): Advances and Perspectives. Advanced Materials, 2013, 25, 313-330.	21.0	287
53	1,2,5,6-Naphthalenediimide Based Donor–Acceptor Copolymers Designed from Isomer Chemistry for Organic Semiconducting Materials. Macromolecules, 2013, 46, 7705-7714.	4.8	56
54	Organic Electronics: Ultrathin Film Organic Transistors: Precise Control of Semiconductor Thickness via Spinâ€Coating (Adv. Mater. 10/2013). Advanced Materials, 2013, 25, 1370-1370.	21.0	5

#	Article	IF	CITATIONS
55	Ultrathin Film Organic Transistors: Precise Control of Semiconductor Thickness via Spin oating. Advanced Materials, 2013, 25, 1401-1407.	21.0	222
56	All-brush-painted top-gate organic thin-film transistors. Journal of Materials Chemistry C, 2013, 1, 3072.	5.5	37
57	Critical Role of Alkyl Chain Branching of Organic Semiconductors in Enabling Solution-Processed N-Channel Organic Thin-Film Transistors with Mobility of up to 3.50 cm ² V ^{–1} s ^{–1} . Journal of the American Chemical Society, 2013, 135, 2338-2349.	13.7	379
58	Diketopyrrolopyrrole-Containing Quinoidal Small Molecules for High-Performance, Air-Stable, and Solution-Processable n-Channel Organic Field-Effect Transistors. Journal of the American Chemical Society, 2012, 134, 4084-4087.	13.7	280
59	One-Pot Synthesis of Core-Expanded Naphthalene Diimides: Enabling <i>N</i> -Substituent Modulation for Diverse n-Type Organic Materials. Organic Letters, 2012, 14, 292-295.	4.6	63