
Keith Pardee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4221475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell, 2016, 165, 1255-1266.	28.9	1,061
2	Paper-Based Synthetic Gene Networks. Cell, 2014, 159, 940-954.	28.9	597
3	Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature, 2014, 516, 56-61.	27.8	343
4	Portable, On-Demand Biomolecular Manufacturing. Cell, 2016, 167, 248-259.e12.	28.9	292
5	Synthetic biology devices for in vitro and in vivo diagnostics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14429-14435.	7.1	281
6	The Drosophila Nuclear Receptor E75 Contains Heme and Is Gas Responsive. Cell, 2005, 122, 195-207.	28.9	235
7	BioBitsâ,,¢ Explorer: A modular synthetic biology education kit. Science Advances, 2018, 4, eaat5105.	10.3	113
8	A multiplexed, electrochemical interface for gene-circuit-based sensors. Nature Chemistry, 2020, 12, 48-55.	13.6	98
9	Structural Proteomics:  Toward High-Throughput Structural Biology as a Tool in Functional Genomics. Accounts of Chemical Research, 2003, 36, 183-189.	15.6	96
10	The <i>Drosophila</i> DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis. Genes and Development, 2009, 23, 2711-2716.	5.9	94
11	BioBitsâ,,¢ Bright: A fluorescent synthetic biology education kit. Science Advances, 2018, 4, eaat5107.	10.3	90
12	Synthetic Biology Goes Cell-Free. BMC Biology, 2019, 17, 64.	3.8	79
13	Loop-Mediated Isothermal Amplification (LAMP) for the Diagnosis of Zika Virus: A Review. Viruses, 2020, 12, 19.	3.3	77
14	Clinical and Laboratory Diagnosis of SARS-CoV-2, the Virus Causing COVID-19. ACS Infectious Diseases, 2020, 6, 2319-2336.	3.8	57
15	A glucose meter interface for point-of-care gene circuit-based diagnostics. Nature Communications, 2021, 12, 724.	12.8	54
16	Perspective: Solidifying the impact of cell-free synthetic biology through lyophilization. Biochemical Engineering Journal, 2018, 138, 91-97.	3.6	52
17	P1 Trisaccharide (Galα1,4Galβ1,4GlcNAc) Synthesis by Enzyme Glycosylation Reactions Using Recombinant Escherichia coli. Applied and Environmental Microbiology, 2003, 69, 2110-2115.	3.1	38
18	Gene Networks of Fully Connected Triads with Complete Auto-Activation Enable Multistability and Stepwise Stochastic Transitions. PLoS ONE, 2014, 9, e102873.	2.5	35

Keith Pardee

#	Article	IF	CITATIONS
19	Nuclear Receptors: Small Molecule Sensors that Coordinate Growth, Metabolism and Reproduction. Sub-Cellular Biochemistry, 2011, 52, 123-153.	2.4	29
20	Recent insights into SARS oVâ€2 omicron variant. Reviews in Medical Virology, 2023, 33, .	8.3	29
21	When robotics met fluidics. Lab on A Chip, 2020, 20, 709-716.	6.0	27
22	Field validation of the performance of paper-based tests for the detection of the Zika and chikungunya viruses in serum samples. Nature Biomedical Engineering, 2022, 6, 246-256.	22.5	27
23	Decentralizing Cell-Free RNA Sensing With the Use of Low-Cost Cell Extracts. Frontiers in Bioengineering and Biotechnology, 2021, 9, 727584.	4.1	24
24	Portable sample processing for molecular assays: application to Zika virus diagnostics. Lab on A Chip, 2022, 22, 1748-1763.	6.0	15
25	Multicenter international assessment of a SARS-CoV-2 RT-LAMP test for point of care clinical application. PLoS ONE, 2022, 17, e0268340.	2.5	15
26	High-Efficiency Protection of Linear DNA in Cell-Free Extracts from <i>Escherichia coli</i> and <i>Vibrio natriegens</i> . ACS Synthetic Biology, 2021, 10, 1615-1624.	3.8	13
27	Toward Mail-in-Sensors for SARS-CoV-2 Detection: Interfacing Gel Switch Resonators with Cell-Free Toehold Switches. ACS Sensors, 2022, 7, 806-815.	7.8	12
28	Adaptive, diverse and de-centralized diagnostics are key to the future of outbreak response. BMC Biology, 2020, 18, 153.	3.8	9
29	Logic invades cell-free biosensing. Nature Chemical Biology, 2022, 18, 356-358.	8.0	8
30	Development and validation of a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of ZIKV in patient samples from Brazil. Scientific Reports, 2021, 11, 4111.	3.3	6
31	Cell-Free Biosensors: Synthetic Biology Without Borders. , 2020, , 1-39.		1