Jeffrey D Blaustein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4220850/publications.pdf

Version: 2024-02-01

108 papers 5,637 citations

57719 44 h-index 72 g-index

108 all docs 108 docs citations

108 times ranked 2879 citing authors

#	Article	IF	CITATIONS
1	Pubertal immune challenge suppresses the hypothalamic-pituitary-gonadal axis in male and female mice. Brain Research Bulletin, 2021, 170, 90-97.	1.4	7
2	Estradiol Increases Microglial Response to Lipopolysaccharide in the Ventromedial Hypothalamus during the Peripubertal Sensitive Period in Female Mice. ENeuro, 2020, 7, ENEURO.0505-19.2020.	0.9	7
3	Protein kinase inhibitors infused intraventricularly or into the ventromedial hypothalamus block short latency facilitation of lordosis by oestradiol. Journal of Neuroendocrinology, 2019, 31, e12809.	1.2	3
4	A personal view on traits useful for success in science: Daniel S. Lehrman Award Lecture. Hormones and Behavior, 2019, 111, 3-6.	1.0	1
5	Treatments for Breast Cancer That Affect Cognitive Function in Postmenopausal Women. Policy Insights From the Behavioral and Brain Sciences, 2017, 4, 170-177.	1.4	10
6	Developmental time course and effects of immunostressors that alter hormone-responsive behavior on microglia in the peripubertal and adult female mouse brain. PLoS ONE, 2017, 12, e0171381.	1.1	9
7	Estrogen receptor $\hat{l}\pm$ and \hat{l}^2 are involved in the activation of lordosis behavior in estradiol-primed rats. Hormones and Behavior, 2016, 86, 1-7.	1.0	17
8	Review: Puberty as a time of remodeling the adult response to ovarian hormones. Journal of Steroid Biochemistry and Molecular Biology, 2016, 160, 2-8.	1.2	16
9	Sexual receptivity facilitated by unesterified estradiol: Dependence on estrogen and progestin receptors and priming dose of estradiol benzoate Behavioral Neuroscience, 2015, 129, 777-788.	0.6	11
10	Puberty and adolescence as a time of vulnerability to stressors that alter neurobehavioral processes. Frontiers in Neuroendocrinology, 2014, 35, 89-110.	2.5	183
11	Pubertal immune challenge blocks the ability of estradiol to enhance performance on cognitive tasks in adult female mice. Psychoneuroendocrinology, 2013, 38, 1170-1177.	1.3	33
12	Enduring influence of pubertal stressors on behavioral response to hormones in female mice. Hormones and Behavior, 2013, 64, 390-398.	1.0	32
13	Animals Have a Sex, and so Should Titles and Methods Sections of Articles in Endocrinology. Endocrinology, 2012, 153, 2539-2540.	1.4	28
14	Neural Progestin Receptors and Female Sexual Behavior. Neuroendocrinology, 2012, 96, 152-161.	1.2	49
15	Sex Differences in the Brain: The Not So Inconvenient Truth. Journal of Neuroscience, 2012, 32, 2241-2247.	1.7	576
16	Long-term effects of pubertal stressors on female sexual receptivity and estrogen receptor-α expression in CD-1 female mice. Hormones and Behavior, 2011, 59, 565-571.	1.0	68
17	Long-term alteration of anxiolytic effects of ovarian hormones in female mice by a peripubertal immune challenge. Hormones and Behavior, 2011, 60, 318-326.	1.0	30
18	Nearby Construction Influences the Physiology of Research Animals: Beyond Stress Hormones. Endocrinology, 2011, 152, 1197-1198.	1.4	4

#	Article	IF	Citations
19	Fraud: Just Say No!. Endocrinology, 2010, 151, 1-3.	1.4	17
20	The Year In Neuroendocrinology. Molecular Endocrinology, 2010, 24, 252-260.	3.7	16
21	Enduring Influences of Peripubertal/Adolescent Stressors on Behavioral Response to Estradiol and Progesterone in Adult Female Mice. Endocrinology, 2009, 150, 3717-3725.	1.4	55
22	Reduced Behavioral Response to Gonadal Hormones in Mice Shipped during the Peripubertal/Adolescent Period. Endocrinology, 2009, 150, 2351-2358.	1.4	113
23	Non-intromissive mating stimuli are sufficient to enhance sexual behaviors in ovariectomized female rats. Hormones and Behavior, 2009, 55, 404-411.	1.0	11
24	Neuroendocrine Regulation of Feminine Sexual Behavior: Lessons from Rodent Models and Thoughts About Humans. Annual Review of Psychology, 2008, 59, 93-118.	9.9	95
25	Deletion of theBax gene disrupts sexual behavior and modestly impairs motor function in mice. Developmental Neurobiology, 2007, 67, 1511-1519.	1.5	33
26	Nuclear receptor coactivators function in estrogen receptor- and progestin receptor-dependent aspects of sexual behavior in female rats. Hormones and Behavior, 2006, 50, 383-392.	1.0	72
27	Estrogenic effects of zearalenone on the expression of progestin receptors and sexual behavior in female rats. Hormones and Behavior, 2005, 47, 178-184.	1.0	59
28	Can You Teach an Old Dogma New Tricks?. Endocrinology, 2004, 145, 1055-1056.	1.4	5
29	Progestin Receptors. Annals of the New York Academy of Sciences, 2003, 1007, 238-250.	1.8	51
30	Response of ERÎ \pm -IR and ERÎ 2 -IR cells in the forebrain of female rats to mating stimuli. Hormones and Behavior, 2003, 43, 444-453.	1.0	45
31	Mating Stimulation Required for Mating-Induced Estrous Abbreviation in Female Rats: Effects of Repeated Testing. Hormones and Behavior, 2002, 42, 206-211.	1.0	19
32	Sensory Cues Mediating Mating-Induced Potentiation of Sexual Receptivity in Female Rats. Hormones and Behavior, 2001, 40, 77-83.	1.0	26
33	A dopamine antagonist blocks vaginocervical stimulation-induced neuronal responses in the rat forebrain. Brain Research, 2001, 921, 173-182.	1.1	19
34	Maternal Behavior Stimulates <i>c-fos</i> Activity within Estrogen Receptor Alpha-Containing Neurons in Lactating Rats. Neuroendocrinology, 2000, 72, 91-101.	1.2	86
35	Cells containing immunoreactive estrogen receptor- \hat{l}_{\pm} in the human basal forebrain. Brain Research, 2000, 856, 142-151.	1.1	102
36	Effect of photoperiod on neural estrogen and progestin receptor immunoreactivity in female Syrian hamsters. Brain Research, 1998, 796, 63-74.	1.1	21

#	Article	IF	CITATIONS
37	Mating-Related Stimulation Induces Phosphorylation of Dopamine- and Cyclic AMP-Regulated Phosphoprotein-32 in Progestin Receptor-Containing Areas in the Female Rat Brain. Journal of Neuroscience, 1998, 18, 10189-10195.	1.7	51
38	Progesterone-Independent Activation of Rat Brain Progestin Receptors by Reproductive Stimuli. Endocrinology, 1997, 138, 511-514.	1.4	71
39	Convergence of Substance P and Estrogen Receptor Immunoreactivity in the Midbrain Central Gray of Female Guinea Pigs. Neuroendocrinology, 1997, 66, 28-37.	1.2	7
40	Progesterone Receptor Function from a Behavioral Perspective. Hormones and Behavior, 1997, 31, 244-255.	1.0	133
41	Progesterone treatment increases Fos-immunoreactivity within some progestin receptor-containing neurons in localized regions of female rat forebrain. Brain Research, 1997, 746, 164-170.	1.1	20
42	Progesterone blockade of a luteinizing hormone surge blocks luteinizing hormone-releasing hormone Fos activation and activation of its preoptic area afferents. Brain Research, 1997, 778, 272-280.	1.1	45
43	Reproductively-Relevant Stimuli Induce Fos-Immunoreactivity within Progestin Receptor-Containing Neurons in Localized Regions of Female Rat Forebrain. Journal of Neuroendocrinology, 1996, 8, 831-838.	1.2	44
44	The suprachiasmatic area in the female hamster projects to neurons containing estrogen receptors and GnRH. NeuroReport, 1995, 6, 1715-1722.	0.6	92
45	A Subgroup of LHRH Neurons in Guinea Pigs with Progestin Receptors Is Centrally Positioned within the Total Population of LHRH Neurons. Neuroendocrinology, 1995, 61, 265-275.	1.2	59
46	Projections from Ventrolateral Hypothalamic Neurons Containing Progestin Receptor- and Substance P-Immunoreactivity to Specific Forebrain and Midbrain Areas in Female Guinea Pigs. Journal of Neuroendocrinology, 1994, 6, 135-144.	1.2	18
47	Intraneuronal Convergence of Tactile and Hormonal Stimuli Associated with Female Reproduction in Rats. Journal of Neuroendocrinology, 1994, 6, 211-216.	1.2	52
48	Down-Regulation of Estrogen Receptor Immunoreactivity by 17?-estradiol in the Guinea Pig Forebrain. Journal of Neuroendocrinology, 1994, 6, 639-648.	1.2	35
49	Estradiol and progesterone influence the response of ventromedial hypothalamic neurons to tactile stimuli associated with female reproduction. Brain Research, 1994, 646, 267-272.	1.1	46
50	Immunocytochemical localization of midbrain estrogen receptor- and progestin receptor-containing cells in female guinea pigs. Journal of Comparative Neurology, 1993, 328, 76-87.	0.9	56
51	Estrogen receptor-immunoreactive forebrain neurons project to the ventrolateral hypothalamus in female guinea pigs. Journal of Comparative Neurology, 1993, 334, 571-589.	0.9	13
52	Colchicine-Induced Accumulation of Estrogen Receptor and Progestin Receptor Immunoreactivity in Atypical Areas in Guinea-Pig Brain. Journal of Neuroendocrinology, 1993, 5, 63-70.	1.2	19
53	Fos Expression in the Rat Brain Following Vaginal-Cervical Stimulation by Mating and Manual Probing. Journal of Neuroendocrinology, 1993, 5, 397-404.	1.2	158
54	Estrogen-receptor immunoreactivity in hamster brain: preoptic area, hypothalamus and amygdala. Brain Research, 1993, 631, 304-312.	1.1	92

#	Article	IF	CITATIONS
55	Heterogeneous Regulation of Steroid Hormone Receptors in the Brain. American Zoologist, 1993, 33, 219-228.	0.7	5
56	Modulation of sex steroid receptors by neurotransmitters: Relevant techniques. Methods, 1992, 1, 42-51.	0.5	8
57	Neural distribution of estrogen receptor immunoreactive cells in the female musk shrew. Brain Research, 1992, 595, 189-194.	1.1	31
58	Estradiol pulses induce progestin receptors selectively in substance P-immunoreactive neurons in the ventrolateral hypothalamus of female guinea pigs. Journal of Neurobiology, 1992, 23, 293-301.	3.7	24
59	Progestin receptors in substance P-immunoreactive neurons in the hypothalamus of male guinea pigs after behaviorally effective estradiol pulse treatment. Journal of Neurobiology, 1992, 23, 302-308.	3.7	6
60	Progesterone facilitates lordosis, but not LH release, in estradiol pulse-primed male rats. Physiology and Behavior, 1991, 50, 237-242.	1.0	10
61	A site for estradiol priming of progesterone-facilitated sexual receptivity in the ventrolateral hypothalamus of female guinea pigs. Brain Research, 1991, 559, 191-199.	1.1	49
62	Estrogen receptor binding in regions of the rat hypothalamus and preoptic area after inhibition of dopamine-Î ² -hydroxylase. Brain Research, 1991, 549, 260-267.	1.1	6
63	Immunocytochemical evidence for noradrenergic regulation of estrogen receptor concentrations in the guinea pig hypothalamus. Brain Research, 1991, 565, 321-329.	1.1	29
64	Neuroanatomical Relationships of Substance P and Sex SteroidHormone?sensitive Neurons Involved in Sexual Behavior. Annals of the New York Academy of Sciences, 1991, 632, 314-331.	1.8	10
65	Development of estradiol-induced progestin receptor immunoreactivity in the hypothalamus of female guinea pigs. Journal of Neurobiology, 1991, 22, 195-203.	3.7	11
66	Biochemical and Immunocytochemical Assessment of Neural Progestin Receptors Following Estradiol Treatments that Eliminate the Sex Difference in Progesterone-Facilitated Lordosis in Guinea-Pigs. Journal of Neuroendocrinology, 1990, 2, 79-86.	1.2	31
67	Immunocytochemical colocalization of progestin receptors and \hat{i}^2 -endorphin or enkephalin in the hypothalamus of female guinea pigs. Journal of Neurobiology, 1990, 21, 768-780.	3.7	48
68	Many progestin receptor-containing neurons in the guinea pig ventrolateral hypothalamus contain substance P: immunocytochemical evidence. Brain Research, 1990, 517, 175-181.	1.1	30
69	A Small Population of Tyrosine Hydroxylase-Immunoreactive Neurons in the Guinea-Pig Arcuate Nucleus Contains Progestin Receptor-Immunoreactivity. Journal of Neuroendocrinology, 1989, 1, 333-338.	1.2	29
70	Long-term ovariectomy and hormone-induced sexual behavior, progestin receptors, and hypothalamic morphology in female rats. Hormones and Behavior, 1989, 23, 269-278.	1.0	9
71	Development of steroid-induced lordosis in female guinea pigs: Effects of different estradiol and progesterone treatments, clonidine, and early weaning. Hormones and Behavior, 1989, 23, 118-129.	1.0	16
72	Development of progesterone-facilitated lordosis in female guinea pigs: relationship to neural estrogen and progestin receptors. Brain Research, 1989, 484, 168-176.	1.1	21

#	Article	IF	Citations
73	Estrogen receptor-immunostaining of neuronal cytoplasmic processes as well as cell nuclei in guinea pig brain. Brain Research, 1989, 495, 75-82.	1.1	102
74	Estradiol-Induced Progestin Receptor Immunoreactivity Is Found Only in Estrogen Receptor-Immunoreactive Cells in Guinea Pig Brain. Neuroendocrinology, 1989, 49, 454-461.	1.2	190
75	Immunocytochemical localization of estrogen-induced progestin receptors in guinea pig brain. Brain Research, 1988, 474, 1-15.	1.1	161
76	Steroids induce hypothalamic progestin receptors and facilitate female sexual behavior in neonatal rats. Brain Research, 1988, 449, 403-407.	1.1	22
77	Small apomorphine-induced increase in the concentration of cytosol estrogen receptors in female rat hypothalamus and pituitary. Brain Research Bulletin, 1987, 18, 585-590.	1.4	12
78	The $\hat{l}\pm 1$ -noradrenergic antagonist prazosin decreases the concentration of estrogen receptors in female rat hypothalamus. Brain Research, 1987, 404, 39-50.	1.1	48
79	Noradrenergic regulation of cytosol estrogen receptors in female rat hypothalamus: possible role ofga2-noradrenergic receptors. Brain Research, 1987, 404, 51-57.	1.1	43
80	Further evidence of noradrenergic regulation of rat hypothalamic estrogen receptor concentration: possible non-functional increase and functional decrease. Brain Research, 1987, 436, 253-264.	1.1	21
81	Estrogen-Induced and Estrogen-Facilitated Female Rat Sexual Behavior Is Not Mediated by Progestin Receptors. Neuroendocrinology, 1987, 45, 152-159.	1.2	50
82	Hypothalamic nuclear progestin receptors and the duration of sexual receptivity in ovariectomized and ovariectomized-hysterectomized rats. Physiology and Behavior, 1986, 36, 211-215.	1.0	8
83	Steroid Receptors and Hormone Action in the Brain. Annals of the New York Academy of Sciences, 1986, 474, 400-414.	1.8	25
84	Abbreviation of the period of sexual behavior in female guinea pigs by the progesterone antagonist RU 486. Brain Research, 1986, 373, 103-113.	1.1	30
85	Some Catecholamine Inhibitors Do Not Cause Accumulation of Nuclear Estrogen Receptors in Rat Hypothalamus and Anterior Pituitary Gland. Neuroendocrinology, 1986, 43, 143-149.	1.2	24
86	Dopamine- \hat{l}^2 -hydroxylase Inhibitors Modulate the Concentration of Functional Estrogen Receptors in Female Rat Hypothalamus and Pituitary Gland. Neuroendocrinology, 1986, 43, 150-158.	1.2	40
87	Cell Nuclear Accumulation of Estrogen Receptors in Rat Brain and Pituitary Gland after Treatment with a Dopamine-Î ² -Hydroxylase Inhibitor. Neuroendocrinology, 1986, 42, 44-50.	1.2	18
88	Noradrenergic inhibitors cause accumulation of nuclear progestin receptors in guinea pig hypothalamus. Brain Research, 1985, 325, 89-98.	1.1	22
89	Loss of hypothalamic nuclear-bound progestin receptors: Factors involved and the relationship to heat termination in female guinea pigs. Brain Research, 1985, 358, 180-190.	1.1	23
90	Supplemental Progesterone Delays Heat Termination and the Loss of Progestin Receptors from Hypothalamic Cell Nuclei in Female Guinea Pigs. Neuroendocrinology, 1984, 39, 384-391.	1.2	21

#	Article	lF	CITATIONS
91	$1-(\langle i \rangle \circ \langle i \rangle - \text{Chlorophenyl})-1(\langle i \rangle \circ \langle i \rangle - \text{Chlorophenyl})2,2,2-\text{Trichloroethane Induces Functional Progestin Receptors in the Rat Hypothalamus and Pituitary Gland*. Endocrinology, 1984, 115, 2052-2058.}$	1.4	10
92	Progesterone decrease the concentration of hypothalamic and anterior pituitary estrogen receptors in ovariectomized rats. Brain Research, 1984, 304, 225-236.	1.1	47
93	Inhibition of sexual behavior in female guinea pigs by a progestin receptor antagonist. Brain Research, 1984, 301, 343-349.	1.1	96
94	Alteration of sensitivity to progesterone facilitation of lordosis in guinea pigs by modulation of hypothalamic progestin receptors. Brain Research, 1982, 243, 287-300.	1.1	54
95	Progesterone in high doses may overcome progesterone's desensitization effect on lordosis by translocation of hypothalamic progestin receptors. Hormones and Behavior, 1982, 16, 175-190.	1.0	39
96	Changes in noradrenergic transmission alter the concentration of cytoplasmic progestin receptors in hypothalamus. Brain Research, 1981, 207, 371-396.	1.1	95
97	A Sex Difference in the Progestin Receptor System of Guinea Pig Brain. Neuroendocrinology, 1980, 31, 403-409.	1.2	64
98	Nuclear Progestin Receptors in Guinea Pig Brain Measured by an <i>in Vitro</i> Exchange Assay after Hormonal Treatments that Affect Lordosis*. Endocrinology, 1980, 106, 1061-1069.	1.4	142
99	Progesterone at plasma levels lower than those of mid-pregnancy decreases sexual behavior in ovariectomized rats. Physiology and Behavior, 1979, 23, 1099-1104.	1.0	12
100	Cytoplasmic progestin-receptors in guinea pig brain: Characteristics and relationship to the induction of sexual behavior. Brain Research, 1979, 169, 481-497.	1.1	209
101	Cytoplasmic progestin receptors in female Guinea Pig brain and their relationship to refractoriness in expression of female sexual behavior. Brain Research, 1979, 177, 489-498.	1.1	90
102	Long-term retention of estradiol by brain cell nuclei and female rat sexual behavior. Brain Research, 1979, 173, 355-359.	1.1	37
103	Progestin binding by brain and pituitary cell nuclei and female rat sexual behavior. Brain Research, 1978, 140, 360-367.	1.1	98
104	Concurrent inhibition of sexual behavior, but not brain $[\hat{a} \in "3H]$ estradiol uptake, by progesterone in female rats Journal of Comparative and Physiological Psychology, 1977, 91, 742-751.	1.8	59
105	Sequential inhibition of sexual behavior by progesterone in female rats: Comparison with a synthetic antiestrogen Journal of Comparative and Physiological Psychology, 1977, 91, 752-760.	1.8	75
106	Binding of [3H]estradiol by brain cell nuclei and female rat sexual behavior: inhibition by experimental diabetes. Brain Research, 1977, 135, 135-146.	1.1	44
107	Effects of ovariectomy and estradiol on body weight and food intake in gold thioglucose-treated mice. Physiology and Behavior, 1976, 17, 1027-1030.	1.0	45
108	Ovarian influences on the meal patterns of female ratsâ~†. Physiology and Behavior, 1976, 17, 201-208.	1.0	248