
Christophe Le Poncin-Lafitte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4220685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of dipolar magnetic fields on gravitational wave strain by galactic binaries. Physical Review D, 2022, 105, .	4.7	7
2	New horizons for fundamental physics with LISA. Living Reviews in Relativity, 2022, 25, .	26.7	82
3	ACES/PHARAO: high-performance space-to-ground and ground-to-ground clock comparison for fundamental physics. GPS Solutions, 2021, 25, 1.	4.3	5
4	Constraining velocity-dependent Lorentz and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>C</mml:mi><mml:mi>P</mml:mi><mml:mi>T</mml:mi> violations using lunar laser ranging. Physical Review D, 2021, 103, .</mml:math 	4.7	8
5	The NAROO digitization center. Astronomy and Astrophysics, 2021, 652, A3.	5.1	2
6	Exploring the foundations of the physical universe with space tests of the equivalence principle. Experimental Astronomy, 2021, 51, 1695-1736.	3.7	20
7	Testing gravity with cold-atom clocks in space. European Physical Journal D, 2020, 74, 1.	1.3	23
8	Prospects for fundamental physics with LISA. General Relativity and Gravitation, 2020, 52, 1.	2.0	198
9	A new test of gravitational redshift using Galileo satellites: The GREAT experiment. Comptes Rendus Physique, 2019, 20, 176-182.	0.9	11
10	Gravitational redshift test with the future ACES mission. Classical and Quantum Gravity, 2019, 36, 245004.	4.0	20
11	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2019, 623, A110.	5.1	101
12	Evolution of star–planet systems under magnetic braking and tidal interaction. Astronomy and Astrophysics, 2019, 621, A124.	5.1	33
13	Use of Geodesy and Geophysics Measurements to Probe the Gravitational Interaction. Fundamental Theories of Physics, 2019, , 317-358.	0.3	1
14	Could star-planet magnetic interactions lead to planet migration and influence stellar rotation?. Proceedings of the International Astronomical Union, 2019, 15, 295-299.	0.0	0
15	Atomic clock ensemble in space (ACES) data analysis. Classical and Quantum Gravity, 2018, 35, 035018.	4.0	32
16	Impact analysis of the transponder time delay on radio-tracking observables. Advances in Space Research, 2018, 61, 89-96.	2.6	6
17	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A11.	5.1	323
18	Gravitational Redshift Test Using Eccentric <i>Galileo</i> Satellites. Physical Review Letters, 2018, 121, 231101.	7.8	115

#	Article	IF	CITATIONS
19	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A13.	5.1	78
20	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A14.	5.1	140
21	<i>Caia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A10.	5.1	638
22	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A1.	5.1	6,364
23	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A12.	5.1	491
24	Lorentz Symmetry Violations from Matter-Gravity Couplings with Lunar Laser Ranging. Physical Review Letters, 2017, 119, 201102.	7.8	41
25	Test of Special Relativity Using a Fiber Network of Optical Clocks. Physical Review Letters, 2017, 118, 221102.	7.8	155
26	New constraints on Saturn's interior from Cassini astrometric data. Icarus, 2017, 281, 286-296.	2.5	137
27	Application of time transfer functions to <i>Gaia</i> 's global astrometry. Astronomy and Astrophysics, 2017, 608, A83.	5.1	2
28	Local tests of gravitation with Gaia observations of Solar System Objects. Proceedings of the International Astronomical Union, 2017, 12, 63-66.	0.0	3
29	Astrometry for New Reductions: The ANR method. Proceedings of the International Astronomical Union, 2017, 12, 96-97.	0.0	1
30	<i>Gaia</i> Data Release 1. Astronomy and Astrophysics, 2017, 605, A79.	5.1	78
31	<i>Gaia</i> Data Release 1. Astronomy and Astrophysics, 2017, 601, A19.	5.1	77
32	Tests of Lorentz Symmetry in the Gravitational Sector. Universe, 2016, 2, 30.	2.5	68
33	The <i>Gaia</i> mission. Astronomy and Astrophysics, 2016, 595, A1.	5.1	4,509
34	<i>Gaia</i> Data Release 1. Astronomy and Astrophysics, 2016, 595, A2.	5.1	1,590
35	Lorentz symmetry and very long baseline interferometry. Physical Review D, 2016, 94, .	4.7	28
36	Testing Lorentz Symmetry with Lunar Laser Ranging. Physical Review Letters, 2016, 117, 241301.	7.8	48

#	Article	IF	CITATIONS
37	The impact of rotation on turbulent tidal friction in stellar and planetary convective regions. Astronomy and Astrophysics, 2016, 592, A33.	5.1	33
38	Testing Lorentz symmetry with planetary orbital dynamics. Physical Review D, 2015, 92, .	4.7	48
39	SIMULATIONS OF SOLAR SYSTEM OBSERVATIONS IN ALTERNATIVE THEORIES OF GRAVITY. , 2015, , .		2
40	Tidal dissipation in stars and fluid planetary layers and its impact on the evolution of star-planet systems. EPJ Web of Conferences, 2015, 101, 04005.	0.3	1
41	Scaling laws to understand tidal dissipation in fluid planetary regions and stars I. Rotation, stratification and thermal diffusivity. Astronomy and Astrophysics, 2015, 581, A118.	5.1	27
42	Relativistic formulation of coordinate light time, Doppler, and astrometric observables up to the second post-Minkowskian order. Physical Review D, 2014, 89, .	4.7	39
43	Time transfer functions as a way to validate light propagation solutions for space astrometry. Classical and Quantum Gravity, 2014, 31, 015021.	4.0	19
44	Light propagation in the field of a moving axisymmetric body: Theory and applications to the Juno mission. Physical Review D, 2014, 90, .	4.7	25
45	Impact of the frequency dependence of tidal Q on the evolution of planetary systems. Astronomy and Astrophysics, 2014, 561, L7.	5.1	35
46	Scaling laws to understand tidal dissipation in fluid planetary layers and stars. Proceedings of the International Astronomical Union, 2014, 9, 29-32.	0.0	0
47	Tidal interactions in rotating multiple stars and their impact on their evolution. Proceedings of the International Astronomical Union, 2014, 9, 208-210.	0.0	Ο
48	HOW TO TEST THE SME WITH SPACE MISSIONS?. , 2014, , 107-110.		0
49	Time and frequency transfer with the ESA/CNES ACES-PHARAO mission. Proceedings of the International Astronomical Union, 2012, 10, 211-212.	0.0	2
50	Radioscience simulations in general relativity and in alternative theories of gravity. Classical and Quantum Gravity, 2012, 29, 235027.	4.0	38
51	STRONG TIDAL DISSIPATION IN SATURN AND CONSTRAINTS ON ENCELADUS' THERMAL STATE FROM ASTROMETRY. Astrophysical Journal, 2012, 752, 14.	4.5	163
52	Time and frequency transfer with a MicroWave Link in the ACES/PHARAO mission. , 2012, , .		12
53	GETEMME—a mission to explore the Martian satellites and the fundamentals of solar system physics. Experimental Astronomy, 2012, 34, 243-271.	3.7	17
54	Improved determination of $i \hat{i} < i $ by VLBI. Astronomy and Astrophysics, 2011, 529, A70.	5.1	87

#	Article	lF	CITATIONS
55	Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons. Icarus, 2011, 216, 535-550.	2.5	123
56	Tidal dynamics of extended bodies in planetary systems and multiple stars. Astronomy and Astrophysics, 2009, 497, 889-910.	5.1	44
57	The construction of the large quasar astrometric catalogue (LQAC). Astronomy and Astrophysics, 2009, 494, 799-815.	5.1	27
58	INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. Astronomy and Astrophysics, 2009, 507, 1675-1686.	5.1	119
59	Determining the relativistic parameter <i>γ</i> using very long baseline interferometry. Astronomy and Astrophysics, 2009, 499, 331-335.	5.1	76
60	Practical relativistic clock synchronization for high-accuracy space astrometry. Proceedings of the International Astronomical Union, 2009, 5, 334-336.	0.0	0
61	Publisher's Note: Influence of mass multipole moments on the deflection of a light ray by an isolated axisymmetric body [Phys. Rev. D77, 044029 (2008)]. Physical Review D, 2008, 77, .	4.7	0
62	Influence of mass multipole moments on the deflection of a light ray by an isolated axisymmetric body. Physical Review D, 2008, 77, .	4.7	36
63	General post-Minkowskian expansion of time transfer functions. Classical and Quantum Gravity, 2008, 25, 145020.	4.0	87
64	A NICE TOOL FOR RELATIVISTIC ASTROMETRY: SYNGE'S WORLD FUNCTION. , 2008, , .		1
65	A Universal Tool for Determining the Time Delay and the Frequency Shift of Light: Synge's World function. Astrophysics and Space Science Library, 2008, , 153-180.	2.7	11
66	Astrometric comparisons of quasar catalogues. Astronomy and Astrophysics, 2008, 485, 299-302.	5.1	6
67	Numerical study of relativistic frequency shift for the cold-atom clock experiment in space. Classical and Quantum Gravity, 2007, 24, 801-808.	4.0	2
68	Close approaches between Jupiter and quasars with possible application to the scheduled GAIA mission. Astronomy and Astrophysics, 2007, 471, 335-343.	5.1	4
69	A comparative study of rigid Earth, non-rigid Earth nutation theories, and observational data. Astronomy and Astrophysics, 2007, 472, 681-689.	5.1	2
70	World function and time transfer: general post-Minkowskian expansions. Classical and Quantum Gravity, 2004, 21, 4463-4483.	4.0	58