
Davide Calebiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4220671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Persistent cAMP-Signals Triggered by Internalized G-Protein–Coupled Receptors. PLoS Biology, 2009, 7, e1000172.	5.6	471
2	Single-molecule analysis of fluorescently labeled G-protein–coupled receptors reveals complexes with distinct dynamics and organization. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 743-748.	7.1	394
3	Constitutive Activation of PKA Catalytic Subunit in Adrenal Cushing's Syndrome. New England Journal of Medicine, 2014, 370, 1019-1028.	27.0	355
4	Single-molecule imaging reveals receptor–G protein interactions at cell surface hot spots. Nature, 2017, 550, 543-547.	27.8	258
5	Signaling by internalized G-protein-coupled receptors. Trends in Pharmacological Sciences, 2010, 31, 221-228.	8.7	225
6	A 7â€year experience with low blood TSH cutoff levels for neonatal screening reveals an unsuspected frequency of congenital hypothyroidism (CH). Clinical Endocrinology, 2009, 71, 739-745.	2.4	207
7	FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nature Protocols, 2011, 6, 427-438.	12.0	191
8	Thyroid gland development and function in the zebrafish model. Molecular and Cellular Endocrinology, 2009, 312, 14-23.	3.2	177
9	Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Nature Communications, 2017, 8, 443.	12.8	140
10	Intracellular entrapment of wild-type TSH receptor by oligomerization with mutants linked to dominant TSH resistance. Human Molecular Genetics, 2005, 14, 2991-3002.	2.9	106
11	Landscape of somatic mutations in sporadic GH-secreting pituitary adenomas. European Journal of Endocrinology, 2016, 174, 363-372.	3.7	100
12	Novel Somatic Mutations in the Catalytic Subunit of the Protein Kinase A as a Cause of Adrenal Cushing's Syndrome: A European Multicentric Study. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2093-E2100.	3.6	92
13	Super-resolution microscopy compatible fluorescent probes reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. Nature Communications, 2020, 11, 467.	12.8	88
14	Genetics and phenomics of hypothyroidism due to TSH resistance. Molecular and Cellular Endocrinology, 2010, 322, 72-82.	3.2	87
15	Internalization of G-protein-coupled receptors: Implication in receptor function, physiology and diseases. Best Practice and Research in Clinical Endocrinology and Metabolism, 2018, 32, 83-91.	4.7	75
16	Persistent cAMP Signaling by Internalized LH Receptors in Ovarian Follicles. Endocrinology, 2016, 2016, 63-71.	2.8	73
17	Lipolysis drives expression of the constitutively active receptor GPR3 to induce adipose thermogenesis. Cell, 2021, 184, 3502-3518.e33.	28.9	68
18	lmaging of persistent cAMP signaling by internalized G protein-coupled receptors. Journal of Molecular Endocrinology, 2010, 45, 1-8.	2.5	67

#	Article	IF	CITATIONS
19	Syndromes of hormone resistance in the hypothalamic–pituitary–thyroid axis. Best Practice and Research in Clinical Endocrinology and Metabolism, 2006, 20, 529-546.	4.7	66
20	Recurrent EZH1 mutations are a second hit in autonomous thyroid adenomas. Journal of Clinical Investigation, 2016, 126, 3383-3388.	8.2	66
21	Genetic Landscape of Sporadic Unilateral Adrenocortical Adenomas Without PRKACA p.Leu206Arg Mutation. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3526-3538.	3.6	65
22	PKA catalytic subunit mutations in adrenocortical Cushing's adenoma impair association with the regulatory subunit. Nature Communications, 2014, 5, 5680.	12.8	63
23	The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases. Journal of Biological Chemistry, 2016, 291, 508-520.	3.4	63
24	Agonist-induced membrane nanodomain clustering drives GLP-1 receptor responses in pancreatic beta cells. PLoS Biology, 2019, 17, e3000097.	5.6	61
25	Single-Molecule Imaging of GPCR Interactions. Trends in Pharmacological Sciences, 2018, 39, 109-122.	8.7	59
26	cAMP Signals in Drosophila Motor Neurons Are Confined to Single Synaptic Boutons. Cell Reports, 2016, 17, 1238-1246.	6.4	55
27	Heterotrimeric G Protein Subunit Gαq Is a Master Switch for Gβγ-Mediated Calcium Mobilization by Gi-Coupled GPCRs. Molecular Cell, 2020, 80, 940-954.e6.	9.7	54
28	Persistent cAMP signaling by internalized TSH receptors occurs in thyroid but not in HEK293 cells. FASEB Journal, 2012, 26, 2043-2048.	0.5	53
29	Receptor signals come in waves. Nature, 2013, 495, 457-458.	27.8	52
30	Super-resolution imaging reveals the nanoscale organization of metabotropic glutamate receptors at presynaptic active zones. Science Advances, 2020, 6, eaay7193.	10.3	52
31	Kinetics and mechanism of G protein-coupled receptor activation. Current Opinion in Cell Biology, 2014, 27, 87-93.	5.4	51
32	Disruptions of Global and Jagged1-Mediated Notch Signaling Affect Thyroid Morphogenesis in the Zebrafish. Endocrinology, 2012, 153, 5645-5658.	2.8	50
33	Frequent TSH Receptor Genetic Alterations with Variable Signaling Impairment in a Large Series of Children with Nonautoimmune Isolated Hyperthyrotropinemia. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E156-E160.	3.6	47
34	The subcellular dynamics of GPCR signaling. Molecular and Cellular Endocrinology, 2019, 483, 24-30.	3.2	47
35	G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiological Reviews, 2021, 101, 857-906.	28.8	46
36	cAMP signaling microdomains and their observation by optical methods. Frontiers in Cellular Neuroscience, 2014, 8, 350.	3.7	45

3

#	Article	IF	CITATIONS
37	Activating PRKACB somatic mutation in cortisol-producing adenomas. JCI Insight, 2018, 3, .	5.0	44
38	PRKACA Somatic Mutations Are Rare Findings in Aldosterone-Producing Adenomas. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3010-3017.	3.6	43
39	Cushing's syndrome driver mutation disrupts protein kinase A allosteric network, altering both regulation and substrate specificity. Science Advances, 2019, 5, eaaw9298.	10.3	43
40	The Third Intracellular Loop of the Human Somatostatin Receptor 5 Is Crucial for Arrestin Binding and Receptor Internalization after Somatostatin Stimulation. Molecular Endocrinology, 2008, 22, 676-688.	3.7	39
41	Spatiotemporal GLP-1 and GIP receptor signaling and trafficking/recycling dynamics induced by selected receptor mono- and dual-agonists. Molecular Metabolism, 2021, 49, 101181.	6.5	39
42	Selective Modulation of Protein Kinase A I and II Reveals Distinct Roles in Thyroid Cell Gene Expression and Growth. Molecular Endocrinology, 2006, 20, 3196-3211.	3.7	38
43	Technology Insight: modern methods to monitor protein–protein interactions reveal functional TSH receptor oligomerization. Nature Clinical Practice Endocrinology and Metabolism, 2007, 3, 180-190.	2.8	37
44	cAMP signaling in cortisol-producing adrenal adenoma. European Journal of Endocrinology, 2015, 173, M99-M106.	3.7	32
45	Alterations in Protein Kinase A Substrate Specificity as a Potential Cause of Cushing Syndrome. Endocrinology, 2019, 160, 447-459.	2.8	32
46	8-Chloro-Cyclic AMP and Protein Kinase A I-Selective Cyclic AMP Analogs Inhibit Cancer Cell Growth through Different Mechanisms. PLoS ONE, 2011, 6, e20785.	2.5	26
47	Statistical testing approach for fractional anomalous diffusion classification. Physical Review E, 2019, 99, 042149.	2.1	26
48	Selective and Washâ€Resistant Fluorescent Dihydrocodeinone Derivatives Allow Singleâ€Molecule Imaging of μâ€Opioid Receptor Dimerization. Angewandte Chemie - International Edition, 2020, 59, 5958-5964.	13.8	23
49	Single-Molecule Microscopy Reveals Dynamic FLNA Interactions Governing SSTR2 Clustering and Internalization. Endocrinology, 2018, 159, 2953-2965.	2.8	22
50	Sortilin Is a Putative Postendocytic Receptor of Thyroglobulin. Endocrinology, 2009, 150, 509-518.	2.8	21
51	G Protein–Coupled Receptor Pharmacology at the Single-Molecule Level. Annual Review of Pharmacology and Toxicology, 2020, 60, 73-87.	9.4	19
52	Styrene oxide-induced 2′-deoxycytidine adducts: implications for the mutagenicity of styrene oxide. Chemico-Biological Interactions, 2000, 126, 201-213.	4.0	18
53	Differential expression of the protein kinase A subunits in normal adrenal glands and adrenocortical adenomas. Scientific Reports, 2017, 7, 49.	3.3	17
54	Trafficking and Function of GPCRs in the Endosomal Compartment. Methods in Molecular Biology, 2015, 1234, 197-211.	0.9	17

#	Article	IF	CITATIONS
55	Absence of primary hypothyroidism and goiter in Slc26a4 (-/-) mice fed on a low iodine diet. Journal of Endocrinological Investigation, 2011, 34, 593-8.	3.3	17
56	Agonist-regulated Cleavage of the Extracellular Domain of Parathyroid Hormone Receptor Type 1. Journal of Biological Chemistry, 2010, 285, 8665-8674.	3.4	16
57	Hot spots for GPCR signaling: lessons from single-molecule microscopy. Current Opinion in Cell Biology, 2019, 57, 57-63.	5.4	16
58	Autocrine negative feedback regulation of lipolysis through sensing of NEFAs by FFAR4/GPR120 in WAT. Molecular Metabolism, 2020, 42, 101103.	6.5	16
59	Real-Time Monitoring of Somatostatin Receptor-cAMP Signaling in Live Pituitary. Endocrinology, 2010, 151, 4560-4565.	2.8	14
60	Mechanisms of Aberrant PKA Activation by Cα Subunit Mutations. Hormone and Metabolic Research, 2017, 49, 307-314.	1.5	14
61	Cytoskeleton Protein Filamin A Is Required for Efficient Somatostatin Receptor Type 2 Internalization and Recycling through Rab5 and Rab4 Sorting Endosomes in Tumor Somatotroph Cells. Neuroendocrinology, 2020, 110, 642-652.	2.5	13
62	Investigation of Inactive-State κ Opioid Receptor Homodimerization via Single-Molecule Microscopy Using New Antagonistic Fluorescent Probes. Journal of Medicinal Chemistry, 2020, 63, 3596-3609.	6.4	12
63	Real-Time Monitoring of GPCR/cAMP Signalling by FRET and Single-Molecule Microscopy. Hormone and Metabolic Research, 2014, 46, 827-832.	1.5	11
64	Detecting Transient Trapping from a Single Trajectory: A Structural Approach. Entropy, 2021, 23, 1044.	2.2	10
65	Low-Density Lipoprotein (LDL) Receptor/Transferrin Fusion Protein: In Vivo Production and Functional Evaluation as a Potential Therapeutic Tool for Lowering Plasma LDL Cholesterol. Human Gene Therapy, 2004, 15, 533-541.	2.7	9
66	High-resolution Spatiotemporal Analysis of Receptor Dynamics by Single-molecule Fluorescence Microscopy. Journal of Visualized Experiments, 2014, , e51784.	0.3	9
67	Genomic and sequence variants of protein kinase A regulatory subunit type 1β (PRKAR1B) in patients with adrenocortical disease and Cushing syndrome. Genetics in Medicine, 2021, 23, 174-182.	2.4	8
68	ls Disrupted Nucleotide-Substrate Cooperativity a Common Trait for Cushing's Syndrome Driving Mutations of Protein Kinase A?. Journal of Molecular Biology, 2021, 433, 167123.	4.2	8
69	Somatostatin Receptor Type 2 (SSTR2) Internalization and Intracellular Trafficking in Pituitary GH-Secreting Adenomas: Role of Scaffold Proteins and Implications for Pharmacological Resistance. Hormone and Metabolic Research, 2017, 49, 259-268.	1.5	7
70	PRKACB variants in skeletal disease or adrenocortical hyperplasia: effects on protein kinase A. Endocrine-Related Cancer, 2020, 27, 647-656.	3.1	7
71	Thyroid-stimulating hormone receptor activity after internalization. Annales D'Endocrinologie, 2011, 72, 64-67.	1.4	5
72	Selective and Washâ€Resistant Fluorescent Dihydrocodeinone Derivatives Allow Singleâ€Molecule Imaging of μâ€Opioid Receptor Dimerization. Angewandte Chemie, 2020, 132, 6014-6020.	2.0	5

#	Article	IF	CITATIONS
73	Somatic PRKACA Mutations: Association With Transition From Pituitary-Dependent to Adrenal-Dependent Cushing Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5651-5657.	3.6	4
74	PKA Cα subunit mutation triggers caspase-dependent RIIβ subunit degradation via Ser ¹¹⁴ phosphorylation. Science Advances, 2021, 7, .	10.3	4
75	EJE AWARD 2020: Signalling by G protein-coupled receptors: why space and time matter. European Journal of Endocrinology, 2021, 184, R41-R49.	3.7	4
76	Different forms of Resistance to Thyrotropin (TSH) Action. Growth Hormone, 2004, , 177-191.	0.2	3
77	Single-Molecule Fluorescence Microscopy for the Analysis of Fast Receptor Dynamics. Methods in Molecular Biology, 2015, 1335, 53-66.	0.9	2
78	Innenrücktitelbild: Selective and Washâ€Resistant Fluorescent Dihydrocodeinone Derivatives Allow Singleâ€Molecule Imaging of μâ€Opioid Receptor Dimerization (Angew. Chem. 15/2020). Angewandte Chemie, 2020, 132, 6348-6348.	2.0	1
79	Heterotrimeric G Protein Subunit Gαq is a Master Switch for Gβγ-Mediated Calcium Mobilization by Gi-Coupled GPCRs. SSRN Electronic Journal, 0, , .	0.4	1