List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4219648/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative CT perfusion imaging in patients with pancreatic cancer: a systematic review. Abdominal Radiology, 2022, 47, 3101-3117.	2.1	9
2	Progranulin mediates immune evasion of pancreatic ductal adenocarcinoma through regulation of MHCl expression. Nature Communications, 2022, 13, 156.	12.8	28
3	Toward a Better Understanding of Immune Checkpoint Inhibitor Radiolabeled PET Imaging Studies. Journal of Nuclear Medicine, 2022, 63, 359-361.	5.0	0
4	PD-L1 Antibody Pharmacokinetics and Tumor Targeting in Mouse Models for Infectious Diseases. Frontiers in Immunology, 2022, 13, 837370.	4.8	5
5	Individualizing the use of [18F]FDG-PET/CT in patients with complicated Staphylococcus aureus bacteremia: experiences from a tertiary care center. Infection, 2022, 50, 491-498.	4.7	7
6	Multimodal CEA-targeted fluorescence and radioguided cytoreductive surgery for peritoneal metastases of colorectal origin. Nature Communications, 2022, 13, 2621.	12.8	14
7	Intravenous to Oral Switch in Complicated <i>Staphylococcus aureus</i> Bacteremia Without Endovascular Infection: A Retrospective Single-Center Cohort Study. Clinical Infectious Diseases, 2021, 73, 895-898.	5.8	23
8	Growth differentiation factor 15 levels are similar in primary aldosteronism and essential hypertension and do not predict arterial inflammation. Journal of Hypertension, 2021, 39, 593-596.	0.5	0
9	Characterization of Intrinsically Radiolabeled Poly(lactic- <i>co</i> -glycolic acid) Nanoparticles for ex Vivo Autologous Cell Labeling and in Vivo Tracking. Bioconjugate Chemistry, 2021, 32, 1802-1811.	3.6	7
10	The Influence of the Exclusion of Central Necrosis on [18F]FDG PET Radiomic Analysis. Diagnostics, 2021, 11, 1296.	2.6	6
11	An Explorative Study on Monocyte Reprogramming in the Context of Periodontitis In Vitro and In Vivo. Frontiers in Immunology, 2021, 12, 695227.	4.8	13
12	EANM recommendations based on systematic analysis of small animal radionuclide imaging in inflammatory musculoskeletal diseases. EJNMMI Research, 2021, 11, 85.	2.5	6
13	Molecular Imaging of Diabetes. , 2021, , 1415-1431.		0
14	In Vivo PET Imaging of Monocytes Labeled with [89Zr]Zr-PLGA-NH2 Nanoparticles in Tumor and Staphylococcus aureus Infection Models. Cancers, 2021, 13, 5069.	3.7	4
15	The diagnostic value of [18F]FDG-PET/CT in detecting septic thrombosis in patients with central venous catheter-related Staphylococcus aureus bacteremia. Biomedicine and Pharmacotherapy, 2021, 144, 112296.	5.6	7
16	Imaging the Rewired Metabolism in Lung Cancer in Relation to Immune Therapy. Frontiers in Oncology, 2021, 11, 786089.	2.8	2
17	A Clinical Feasibility Study to Image Angiogenesis in Patients with Arteriovenous Malformations Using ⁶⁸ Ga-RGD PET/CT. Journal of Nuclear Medicine, 2020, 61, 270-275.	5.0	7
18	Programmed Cell Death-1/Ligand-1 PET Imaging. PET Clinics, 2020, 15, 35-43.	3.0	34

#	Article	IF	CITATIONS
19	Arterial Wall Inflammation and Increased Hematopoietic Activity in Patients With Primary Aldosteronism. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e1967-e1980.	3.6	27
20	Autologous monocyte-derived DC vaccination combined with cisplatin in stage III and IV melanoma patients: a prospective, randomized phase 2 trial. Cancer Immunology, Immunotherapy, 2020, 69, 477-488.	4.2	42
21	Imaging angiogenesis in patients with head and neck squamous cell carcinomas by [68Ga]Ga-DOTA-E-[c(RGDfK)]2 PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2647-2655.	6.4	13
22	[18F]FDG PET/CT in the staging of inflammatory breast cancer: A systematic review. Critical Reviews in Oncology/Hematology, 2020, 151, 102943.	4.4	12
23	89Zr-durvalumab PD-L1 PET in recurrent or metastatic (R/M) squamous cell carcinoma of the head and neck Journal of Clinical Oncology, 2020, 38, 3573-3573.	1.6	4
24	Prediction of watchful waiting in newly diagnosed metastatic clear cell renal cell carcinoma patients with a good or intermediate prognosis Journal of Clinical Oncology, 2020, 38, 5079-5079.	1.6	1
25	Reprogramming of bone marrow myeloid progenitor cells in patients with severe coronary artery disease. ELife, 2020, 9, .	6.0	23
26	Management of Respiratory Motion Artefacts in ¹⁸ F-fluorodeoxyglucose Positron Emission Tomography using an Amplitude-Based Optimal Respiratory Gating Algorithm. Journal of Visualized Experiments, 2020, , .	0.3	1
27	Natural dendritic cell vaccinations generate immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. Annals of Oncology, 2019, 30, v480.	1.2	2
28	Imaging of T-cells and their responses during anti-cancer immunotherapy. Theranostics, 2019, 9, 7924-7947.	10.0	77
29	Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. , 2019, 7, 302.		72
30	Optimal respiratory-gated [18F]FDG PET/CT significantly impacts the quantification of metabolic parameters and their correlation with overall survival in patients with pancreatic ductal adenocarcinoma. EJNMMI Research, 2019, 9, 24.	2.5	7
31	Lesion detection by [89Zr]Zr-DFO-girentuximab and [18F]FDG-PET/CT in patients with newly diagnosed metastatic renal cell carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1931-1939.	6.4	53
32	Early Recurrence in Completely Resected IIIB and IIIC Melanoma Warrants Restaging Prior to Adjuvant Therapy. Annals of Surgical Oncology, 2019, 26, 3945-3952.	1.5	24
33	Tracers for non-invasive radionuclide imaging of immune checkpoint expression in cancer. EJNMMI Radiopharmacy and Chemistry, 2019, 4, 29.	3.9	23
34	18F-FDG PET/CT of Multiorgan Sarcoid-Like Reaction During Anti–PD-1 Treatment for Melanoma. Clinical Nuclear Medicine, 2019, 44, 905-906.	1.3	11
35	¹⁸ F-FDG PET/CT–Guided Treatment Duration in Patients with High-Risk <i>Staphylococcus Aureus</i> Bacteremia: A Proof of Principle. Journal of Nuclear Medicine, 2019, 60, 998-1002.	5.0	27
36	PD-L1 microSPECT/CT Imaging for Longitudinal Monitoring of PD-L1 Expression in Syngeneic and Humanized Mouse Models for Cancer. Cancer Immunology Research, 2019, 7, 150-161.	3.4	29

#	Article	IF	CITATIONS
37	Succinylated Gelatin Improves the Theranostic Potential of Radiolabeled Exendin-4 in Insulinoma Patients. Journal of Nuclear Medicine, 2019, 60, 812-816.	5.0	21
38	OR04-2 Aldosterone Induces Trained Immunity via Fatty Acid Synthesis. Journal of the Endocrine Society, 2019, 3, .	0.2	0
39	18F-FDG PET/CT in Local Ablative Therapies: A Systematic Review. Journal of Nuclear Medicine, 2018, 59, 551-556.	5.0	16
40	Positron Emission Tomography/Computed Tomography with 89Zr-girentuximab Can Aid in Diagnostic Dilemmas of Clear Cell Renal Cell Carcinoma Suspicion. European Urology, 2018, 74, 257-260.	1.9	65
41	Inflammation and Immune Metabolism. , 2018, , 155-173.		Ο
42	Everolimus Exposure and Early Metabolic Response as Predictors of Treatment Outcomes in Breast Cancer Patients Treated with Everolimus and Exemestane. Targeted Oncology, 2018, 13, 641-648.	3.6	10
43	PD-L1 microSPECT/CT imaging for longitudinal monitoring of PD-L1 expression in syngeneic and humanized mouse models for cancer. Annals of Oncology, 2018, 29, x7.	1.2	Ο
44	Lesion detection by ceCT, 89Zr-girentuximab and FDG PET/CT in newly diagnosed patients (pts) with metastatic clear cell renal cell carcinoma (mccRCC). Annals of Oncology, 2018, 29, viii314-viii315.	1.2	0
45	18F-fluorodeoxyglucose positron-emission tomography combined with computed tomography as a diagnostic tool in native valve endocarditis. Nuclear Medicine Communications, 2018, 39, 747-752.	1.1	37
46	In-vivo imaging of tumor-infiltrating immune cells: implications for cancer immunotherapy. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2018, 62, 56-77.	0.7	19
47	Improving the Diagnostic Performance of ¹⁸ F-Fluorodeoxyglucose Positron-Emission Tomography/Computed Tomography in Prosthetic Heart Valve Endocarditis. Circulation, 2018, 138, 1412-1427.	1.6	138
48	The Potential of In Vivo Imaging for Optimization of Molecular and Cellular Anti-cancer Immunotherapies. Molecular Imaging and Biology, 2018, 20, 696-704.	2.6	30
49	Myeloid and plasmacytoid dendritic cell vaccinations for castration-resistant prostate cancer patients Journal of Clinical Oncology, 2018, 36, 219-219.	1.6	2
50	Everolimus exposure and early metabolic response as predictors for treatment outcomes in breast cancer patients treated with everolimus and exemestane Journal of Clinical Oncology, 2018, 36, 1062-1062.	1.6	0
51	A comparison of the diagnostic value of MRI and 18F-FDG-PET/CT in suspected spondylodiscitis. Infection, 2017, 45, 41-49.	4.7	90
52	¹⁸ F-FDG PET/CT Optimizes Treatment in <i>Staphylococcus Aureus</i> Bacteremia and Is Associated with Reduced Mortality. Journal of Nuclear Medicine, 2017, 58, 1504-1510.	5.0	70
53	Immune-related Adverse Events of Dendritic Cell Vaccination Correlate With Immunologic and Clinical Outcome in Stage III and IV Melanoma Patients. Journal of Immunotherapy, 2016, 39, 241-248.	2.4	26
54	Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients. Oncolmmunology, 2016, 5, e1191732.	4.6	17

#	Article	IF	CITATIONS
55	Favorable overall survival in stage III melanoma patients after adjuvant dendritic cell vaccination. Oncolmmunology, 2016, 5, e1057673.	4.6	67
56	^{99m} Tc-CXCL8 SPECT to Monitor Disease Activity in Inflammatory Bowel Disease. Journal of Nuclear Medicine, 2016, 57, 398-403.	5.0	25
57	Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity. Cancer Immunology, Immunotherapy, 2016, 65, 327-339.	4.2	50
58	Long-lasting multifunctional CD8 ⁺ T cell responses in end-stage melanoma patients can be induced by dendritic cell vaccination. OncoImmunology, 2016, 5, e1067745.	4.6	55
59	Effective Clinical Responses in Metastatic Melanoma Patients after Vaccination with Primary Myeloid Dendritic Cells. Clinical Cancer Research, 2016, 22, 2155-2166.	7.0	211
60	Abstract B077: Non-invasive imaging of the PD-1/PD-L1 pathway in syngeneic murine tumor models. , 2016, , .		0
61	Intranodal vaccination with mRNA-optimized dendritic cells in metastatic melanoma patients. Oncolmmunology, 2015, 4, e1019197.	4.6	55
62	Long Overall Survival After Dendritic Cell Vaccination in Metastatic Uveal Melanoma Patients. American Journal of Ophthalmology, 2014, 158, 939-947.e5.	3.3	53
63	Circulating CD4+ T Cells That Produce IL4 or IL17 When Stimulated by Melan-A but Not by NY-ESO-1 Have Negative Impacts on Survival of Patients with Stage IV Melanoma. Clinical Cancer Research, 2014, 20, 4390-4399.	7.0	36
64	Early predictive value of multifunctional skin-infiltrating lymphocytes in anticancer immunotherapy. Oncolmmunology, 2014, 3, e27219.	4.6	3
65	In vivo imaging of therapy-induced anti-cancer immune responses in humans. Cellular and Molecular Life Sciences, 2013, 70, 2237-2257.	5.4	21
66	Targeting CD4+ T-Helper Cells Improves the Induction of Antitumor Responses in Dendritic Cell–Based Vaccination. Cancer Research, 2013, 73, 19-29.	0.9	131
67	Natural Human Plasmacytoid Dendritic Cells Induce Antigen-Specific T-Cell Responses in Melanoma Patients. Cancer Research, 2013, 73, 1063-1075.	0.9	295
68	Targeting of 111In-Labeled Dendritic Cell Human Vaccines Improved by Reducing Number of Cells. Clinical Cancer Research, 2013, 19, 1525-1533.	7.0	58
69	Reducing cell number improves the homing of dendritic cells to lymph nodes upon intradermal vaccination. Oncolmmunology, 2013, 2, e24661.	4.6	20
70	Importance of helper T-cell activation in dendritic cell-based anticancer immunotherapy. Oncolmmunology, 2013, 2, e24440.	4.6	11
71	Vaccination with mRNA-Electroporated Dendritic Cells Induces Robust Tumor Antigen-Specific CD4+ and CD8+ T Cells Responses in Stage III and IV Melanoma Patients. Clinical Cancer Research, 2012, 18, 5460-5470.	7.0	86
72	In Vivo Tracking Techniques for Cellular Regeneration, Replacement, and Redirection. Journal of Nuclear Medicine, 2012, 53, 1825-1828.	5.0	19

#	Article	IF	CITATIONS
73	Functional T Cells Targeting NY-ESO-1 or Melan-A Are Predictive for Survival of Patients With Distant Melanoma Metastasis. Journal of Clinical Oncology, 2012, 30, 1835-1841.	1.6	112
74	Humoral anti-KLH responses in cancer patients treated with dendritic cell-based immunotherapy are dictated by different vaccination parameters. Cancer Immunology, Immunotherapy, 2012, 61, 2003-2011.	4.2	24
75	Skin-Test Infiltrating Lymphocytes Early Predict Clinical Outcome of Dendritic Cell–Based Vaccination in Metastatic Melanoma. Cancer Research, 2012, 72, 6102-6110.	0.9	50
76	Insight into the dynamics, localization and magnitude of antigen-specific immune responses by [18F]FLT PET imaging. Oncolmmunology, 2012, 1, 744-745.	4.6	3
77	Route of Administration Modulates the Induction of Dendritic Cell Vaccine–Induced Antigen-Specific T Cells in Advanced Melanoma Patients. Clinical Cancer Research, 2011, 17, 5725-5735.	7.0	158
78	Early identification of antigen-specific immune responses in vivo by [¹⁸ F]-labeled 3′-fluoro-3′-deoxy-thymidine ([¹⁸ F]FLT) PET imaging. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18396-18399.	7.1	65
79	Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Research, 2010, 30, 5091-7.	1.1	67
80	In situ Expression of Tumor Antigens by Messenger RNA–Electroporated Dendritic Cells in Lymph Nodes of Melanoma Patients. Cancer Research, 2009, 69, 2927-2934.	0.9	56
81	Limited Amounts of Dendritic Cells Migrate into the T-Cell Area of Lymph Nodes but Have High Immune Activating Potential in Melanoma Patients. Clinical Cancer Research, 2009, 15, 2531-2540.	7.0	172
82	Vaccine-specific local T cell reactivity in immunotherapy-associated vitiligo in melanoma patients. Cancer Immunology, Immunotherapy, 2009, 58, 145-151.	4.2	29
83	Polyinosinic polycytidylic acid prevents efficient antigen expression after mRNA electroporation of clinical grade dendritic cells. Cancer Immunology, Immunotherapy, 2009, 58, 1109-1115.	4.2	25
84	Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunology, Immunotherapy, 2008, 57, 1589-1597.	4.2	141
85	Maximizing dendritic cell migration in cancer immunotherapy. Expert Opinion on Biological Therapy, 2008, 8, 865-874.	3.1	59
86	Phenotypic and functional characterization of mature dendritic cells from pediatric cancer patients. Pediatric Blood and Cancer, 2007, 49, 924-927.	1.5	10