
Samuel H Speck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4219416/publications.pdf Version: 2024-02-01

SAMILEL H SDECK

#	Article	lF	CITATIONS
1	Interleukin 16 contributes to gammaherpesvirus pathogenesis by inhibiting viral reactivation. PLoS Pathogens, 2020, 16, e1008701.	4.7	9
2	Murine gammaherpesvirus infection is skewed toward Igλ+ B cells expressing a specific heavy chain V-segment. PLoS Pathogens, 2020, 16, e1008438.	4.7	7
3	Remarkably Robust Antiviral Immune Response despite Combined Deficiency in Caspase-8 and RIPK3. Journal of Immunology, 2018, 201, 2244-2255.	0.8	6
4	Identification of Novel Kaposi's Sarcoma-Associated Herpesvirus <i>Orf50</i> Transcripts: Discovery of New RTA Isoforms with Variable Transactivation Potential. Journal of Virology, 2017, 91, .	3.4	20
5	Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta. Nucleic Acids Research, 2017, 45, 2503-2515.	14.5	38
6	Murine gammaherpesvirus M2 antigen modulates splenic B cell activation and terminal differentiation in vivo. PLoS Pathogens, 2017, 13, e1006543.	4.7	10
7	A Persistent Interest in Viruses. PLoS Pathogens, 2016, 12, e1005327.	4.7	0
8	CD8+ T Cell Response to Gammaherpesvirus Infection Mediates Inflammation and Fibrosis in Interferon Gamma Receptor-Deficient Mice. PLoS ONE, 2015, 10, e0135719.	2.5	13
9	Gammaherpesvirus Co-infection with Malaria Suppresses Anti-parasitic Humoral Immunity. PLoS Pathogens, 2015, 11, e1004858.	4.7	31
10	Interleukin 21 Signaling in B Cells Is Required for Efficient Establishment of Murine Gammaherpesvirus Latency. PLoS Pathogens, 2015, 11, e1004831.	4.7	32
11	A Tissue Culture Model of Murine Gammaherpesvirus Replication Reveals Roles for the Viral Cyclin in Both Virus Replication and Egress from Infected Cells. PLoS ONE, 2014, 9, e93871.	2.5	3
12	Tyrosine 129 of the Murine Gammaherpesvirus M2 Protein Is Critical for M2 Function In Vivo. PLoS ONE, 2014, 9, e105197.	2.5	7
13	Murine Gammaherpesvirus M2 Protein Induction of IRF4 via the NFAT Pathway Leads to IL-10 Expression in B Cells. PLoS Pathogens, 2014, 10, e1003858.	4.7	45
14	Expansion of Murine Gammaherpesvirus Latently Infected B Cells Requires T Follicular Help. PLoS Pathogens, 2014, 10, e1004106.	4.7	42
15	The Murine Gammaherpesvirus Immediate-Early Rta Synergizes with IRF4, Targeting Expression of the Viral M1 Superantigen to Plasma Cells. PLoS Pathogens, 2014, 10, e1004302.	4.7	13
16	Murine Gammaherpesvirus 68 Reactivation from B Cells Requires IRF4 but Not XBP-1. Journal of Virology, 2014, 88, 11600-11610.	3.4	22
17	RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7753-7758.	7.1	248
18	Insights into chronic gamma-herpesvirus infections. Current Opinion in Virology, 2013, 3, 225-226.	5.4	4

SAMUEL H SPECK

#	Article	IF	CITATIONS
19	Unbiased Mutagenesis of MHV68 LANA Reveals a DNA-Binding Domain Required for LANA Function In Vitro and In Vivo. PLoS Pathogens, 2012, 8, e1002906.	4.7	23
20	Tracking Murine Gammaherpesvirus 68 Infection of Germinal Center B Cells In Vivo. PLoS ONE, 2012, 7, e33230.	2.5	73
21	Characterization of Omental Immune Aggregates during Establishment of a Latent Gammaherpesvirus Infection. PLoS ONE, 2012, 7, e43196.	2.5	16
22	Murine Gamma-herpesvirus Immortalization of Fetal Liver-Derived B Cells Requires both the Viral Cyclin D Homolog and Latency-Associated Nuclear Antigen. PLoS Pathogens, 2011, 7, e1002220.	4.7	31
23	NF-κB p50 Plays Distinct Roles in the Establishment and Control of Murine Gammaherpesvirus 68 Latency. Journal of Virology, 2009, 83, 4732-4748.	3.4	35
24	Gammaherpesvirus-Driven Plasma Cell Differentiation Regulates Virus Reactivation from Latently Infected B Lymphocytes. PLoS Pathogens, 2009, 5, e1000677.	4.7	88
25	Identification of Infected B-Cell Populations by Using a Recombinant Murine Gammaherpesvirus 68 Expressing a Fluorescent Protein. Journal of Virology, 2009, 83, 6484-6493.	3.4	76
26	The MHV68 M2 Protein Drives IL-10 Dependent B Cell Proliferation and Differentiation. PLoS Pathogens, 2008, 4, e1000039.	4.7	62
27	Inhibition of NF-κB Activation In Vivo Impairs Establishment of Gammaherpesvirus Latency. PLoS Pathogens, 2007, 3, e11.	4.7	68
28	ldentification of an Rta responsive promoter involved in driving Î ³ HV68 v-cyclin expression during virus replication. Virology, 2007, 365, 250-259.	2.4	14
29	Ex Vivo Stimulation of B Cells Latently Infected with Gammaherpesvirus 68 Triggers Reactivation from Latency. Journal of Virology, 2005, 79, 5227-5231.	3.4	36
30	The Murine Gammaherpesvirus 68 M2 Gene Is Required for Efficient Reactivation from Latently Infected B Cells. Journal of Virology, 2005, 79, 2261-2273.	3.4	54
31	Long-Term Latent Murine Gammaherpesvirus 68 Infection Is Preferentially Found within the Surface Immunoglobulin D-Negative Subset of Splenic B Cells In Vivo. Journal of Virology, 2003, 77, 8310-8321.	3.4	128
32	Disruption of the M2 Gene of Murine Gammaherpesvirus 68 Alters Splenic Latency following Intranasal, but Not Intraperitoneal, Inoculation. Journal of Virology, 2002, 76, 1790-1801.	3.4	93
33	Disruption of the Murine Gammaherpesvirus 68 M1 Open Reading Frame Leads to Enhanced Reactivation from Latency. Journal of Virology, 2000, 74, 1973-1984.	3.4	94
34	Three Distinct Regions of the Murine Gammaherpesvirus 68 Genome Are Transcriptionally Active in Latently Infected Mice. Journal of Virology, 1999, 73, 2321-2332.	3.4	135
35	B Cells Regulate Murine Gammaherpesvirus 68 Latency. Journal of Virology, 1999, 73, 4651-4661.	3.4	179
36	Murine Î ³ -herpesvirus 68 causes severe large-vessel arteritis in mice lacking interferon-Î ³ responsiveness: A new model for virus-induced vascular disease. Nature Medicine, 1997, 3, 1346-1353.	30.7	230