Alessandro Senes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4218785/publications.pdf

Version: 2024-02-01

		394421	4	4//30/	
30	2,426	19		29	
papers	citations	h-index		g-index	
33	33	33		3052	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	The coiled-coil domain of Escherichia coli FtsLB is a structurally detuned element critical for modulating its activation in bacterial cell division. Journal of Biological Chemistry, 2022, 298, 101460.	3.4	8
2	Analysis of spliceosome dynamics by maximum likelihood fitting of dwell time distributions. Methods, 2019, 153, 13-21.	3.8	12
3	An energetics database to model proteinâ€protein interactions. FASEB Journal, 2019, 33, 642.7.	0.5	O
4	The FtsLB subcomplex of the bacterial divisome is a tetramer with an uninterrupted FtsL helix linking the transmembrane and periplasmic regions. Journal of Biological Chemistry, 2018, 293, 1623-1641.	3.4	30
5	The Cytokinin Oxidase/Dehydrogenase CKX1 Is a Membrane-Bound Protein Requiring Homooligomerization in the Endoplasmic Reticulum for Its Cellular Activity. Plant Physiology, 2018, 176, 2024-2039.	4.8	40
6	Ptc7p Dephosphorylates Select Mitochondrial Proteins to Enhance Metabolic Function. Cell Reports, 2017, 18, 307-313.	6.4	45
7	Combination of Cα–H Hydrogen Bonds and van der Waals Packing Modulates the Stability of GxxxG-Mediated Dimers in Membranes. Journal of the American Chemical Society, 2017, 139, 15774-15783.	13.7	36
8	Screening for transmembrane association in divisome proteins using TOXGREEN, a high-throughput variant of the TOXCAT assay. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2573-2583.	2.6	9
9	<scp>BH</scp> 3â€inâ€groove dimerization initiates and helix 9 dimerization expands Bax pore assembly in membranes. EMBO Journal, 2016, 35, 208-236.	7.8	81
10	Toward high-resolution computational design of the structure and function of helical membrane proteins. Nature Structural and Molecular Biology, 2016, 23, 475-480.	8.2	30
11	Fluorophores, environments, and quantification techniques in the analysis of transmembrane helix interaction using FRET. Biopolymers, 2015, 104, 247-264.	2.4	11
12	Inside-out Ca2+ signalling prompted by STIM1 conformational switch. Nature Communications, 2015, 6, 7826.	12.8	144
13	The Oligomeric States of the Purified Sigma-1 Receptor Are Stabilized by Ligands. Journal of Biological Chemistry, 2014, 289, 20333-20344.	3.4	92
14	Backbone dependency further improves side chain prediction efficiency in the Energy-based Conformer Library (bEBL). Proteins: Structure, Function and Bioinformatics, 2014, 82, 3177-3187.	2.6	12
15	A frequent, GxxxG-mediated, transmembrane association motif is optimized for the formation of interhelical Cα–H hydrogen bonds. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E888-95.	7.1	94
16	A Gly-Zipper Motif Mediates Homodimerization of the Transmembrane Domain of the Mitochondrial Kinase ADCK3. Journal of the American Chemical Society, 2014, 136, 14068-14077.	13.7	17
17	Measurement of Transmembrane Peptide Interactions in Liposomes Using Förster Resonance Energy Transfer (FRET). Methods in Molecular Biology, 2013, 1063, 19-36.	0.9	6
18	Structural Organization of FtsB, a Transmembrane Protein of the Bacterial Divisome. Biochemistry, 2013, 52, 2574-2585.	2.5	31

#	Article	lF	CITATIONS
19	The Transmembrane Domains of the Bacterial Cell Division Proteins FtsB and FtsL Form a Stable High-Order Oligomer. Biochemistry, 2013, 52, 7542-7550.	2.5	23
20	An energyâ€based conformer library for side chain optimization: Improved prediction and adjustable sampling. Proteins: Structure, Function and Bioinformatics, 2012, 80, 2218-2234.	2.6	14
21	Structural informatics, modeling, and design with an openâ€source Molecular Software Library (MSL). Journal of Computational Chemistry, 2012, 33, 1645-1661.	3.3	23
22	Oligomerization State of Photosynthetic Core Complexes Is Correlated with the Dimerization Affinity of a Transmembrane Helix. Journal of the American Chemical Society, 2011, 133, 14071-14081.	13.7	13
23	Computational design of membrane proteins. Current Opinion in Structural Biology, 2011, 21, 460-466.	5.7	29
24	Consensus motif for integrin transmembrane helix association. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 703-708.	7.1	68
25	De Novo Design and Molecular Assembly of a Transmembrane Diporphyrin-Binding Protein Complex. Journal of the American Chemical Society, 2010, 132, 15516-15518.	13.7	110
26	Using $\hat{l}\pm$ -Helical Coiled-Coils to Design Nanostructured Metalloporphyrin Arrays. Journal of the American Chemical Society, 2008, 130, 11921-11927.	13.7	63
27	Ez, a Depth-dependent Potential for Assessing the Energies of Insertion of Amino Acid Side-chains into Membranes: Derivation and Applications to Determining the Orientation of Transmembrane and Interfacial Helices. Journal of Molecular Biology, 2007, 366, 436-448.	4.2	143
28	Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Current Opinion in Structural Biology, 2004, 14, 465-479.	5.7	402
29	Membrane protein folding: beyond the two stage model. FEBS Letters, 2003, 555, 122-125.	2.8	273
30	Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with \hat{l}^2 -branched residues at neighboring positions. Journal of Molecular Biology, 2000, 296, 921-936.	4.2	567