Robert B Gennis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4218058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The cytochrome bd respiratory oxygen reductases. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1398-1413.	0.5	445
2	Properties of the two terminal oxidases of Escherichia coli. Biochemistry, 1991, 30, 3936-3942.	1.2	326
3	The aerobic respiratory chain of Escherichia coli. Trends in Biochemical Sciences, 1987, 12, 262-266.	3.7	280
4	Cytochrome c oxidase: exciting progress and remaining mysteries. Journal of Bioenergetics and Biomembranes, 2008, 40, 521-531.	1.0	252
5	Multitarget Drug Discovery for Tuberculosis and Other Infectious Diseases. Journal of Medicinal Chemistry, 2014, 57, 3126-3139.	2.9	205
6	Structure of the alternative complex III in a supercomplex with cytochrome oxidase. Nature, 2018, 557, 123-126.	13.7	198
7	Glutamate 286 in Cytochromeaa3fromRhodobactersphaeroidesIs Involved in Proton Uptake during the Reaction of the Fully-Reduced Enzyme with Dioxygenâ€. Biochemistry, 1997, 36, 13824-13829.	1.2	177
8	Mechanism of Ubiquinol Oxidation by thebc1Complex:Â Different Domains of the Quinol Binding Pocket and Their Role in the Mechanism and Binding of Inhibitorsâ€. Biochemistry, 1999, 38, 15807-15826.	1.2	155
9	Rapid purification of wildtype and mutant cytochromecoxidase fromRhodobacter sphaeroidesby Ni2+-NTA affinity chromatography. FEBS Letters, 1995, 368, 148-150.	1.3	153
10	Role of the Pathway through K(I-362) in Proton Transfer in CytochromecOxidase fromR. sphaeroidesâ€. Biochemistry, 1998, 37, 2470-2476.	1.2	139
11	Antiinfectives targeting enzymes and the proton motive force. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7073-82.	3.3	138
12	Diversity of the Heme–Copper Superfamily in Archaea: Insights from Genomics and Structural Modeling. , 2008, 45, 1-31.		124
13	A Mutation in Subunit I of Cytochrome Oxidase fromRhodobacter sphaeroidesResults in an Increase in Steady-State Activity but Completely Eliminates Proton Pumpingâ€. Biochemistry, 2002, 41, 13417-13423.	1.2	122
14	Aerobic respiratory chain of <i>Escherichia coli</i> is not allowed to work in fully uncoupled mode. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17320-17324.	3.3	121
15	Adaptation of aerobic respiration to low O ₂ environments. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14109-14114.	3.3	119
16	Mutations in the Putative H-Channel in the CytochromecOxidase fromRhodobactersphaeroidesShow That This Channel Is Not Important for Proton Conduction but Reveal Modulation of the Properties of Hemeaâ€. Biochemistry, 2000, 39, 2989-2996.	1.2	112
17	Coulometric and spectroscopic analysis of the purified cytochrome d complex of Escherichia coli: evidence for the identification of "cytochrome a1" as cytochrome b595. Biochemistry, 1986, 25, 2314-2321.	1.2	110
18	The cytochrome <i> ba ₃ </i> oxygen reductase from <i>Thermus thermophilus</i> uses a single input channel for proton delivery to the active site and for proton pumping. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16169-16173.	3.3	102

#	Article	IF	CITATIONS
19	Polar Residues in Helix VIII of Subunit I of CytochromecOxidase Influence the Activity and the Structure of the Active Siteâ€. Biochemistry, 1996, 35, 10776-10783.	1.2	99
20	Effects of Mutation of the Conserved Lysine-362 in CytochromecOxidase fromRhodobacter sphaeroidesâ€. Biochemistry, 1997, 36, 14456-14464.	1.2	95
21	Purification and Characterization of the Cytochrome c Oxidase from Rhodopseudomonas sphaeroides. FEBS Journal, 1982, 125, 189-195.	0.2	93
22	The low-spin heme site of cytochrome o from Escherichia coli is promiscuous with respect to heme type. Biochemistry, 1992, 31, 10363-10369.	1.2	93
23	Aspartate-132 in Cytochrome c Oxidase from Rhodobacter sphaeroides Is Involved in a Two-Step Proton Transfer during Oxo-Ferryl Formation. Biochemistry, 1999, 38, 6826-6833.	1.2	89
24	Controlled uncoupling and recoupling of proton pumping in cytochrome c oxidase. Proceedings of the United States of America, 2006, 103, 317-322.	3.3	89
25	Sequencing and Preliminary Characterization of the Na+-Translocating NADH:Ubiquinone Oxidoreductase fromVibrio harveyiâ€. Biochemistry, 1999, 38, 16246-16252.	1.2	88
26	Cloning and DNA sequencing of the fbc operon encoding the cytochrome bc1 complex from Rhodobacter sphaeroides. Characterization of fbc deletion mutants and complementation by a site-specific mutational variant. FEBS Journal, 1990, 194, 399-411.	0.2	87
27	lonophoric effects of the antitubercular drug bedaquiline. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7326-7331.	3.3	85
28	The cbb3-type cytochrome c oxidase from Rhodobacter sphaeroides, a proton-pumping heme-copper oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 421-434.	0.5	84
29	The Post-Translational Modification in CytochromecOxidase Is Required To Establish a Functional Environment of the Catalytic Siteâ€. Biochemistry, 1998, 37, 14471-14476.	1.2	81
30	Modified, large-scale purification of the cytochrome o complex (bo-type oxidase) of Escherichia coli yields a two heme/one copper terminal oxidase with high specific activity. Biochemistry, 1992, 31, 6917-6924.	1.2	77
31	Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3657-3662.	3.3	76
32	Transmembrane Charge Separation during the Ferryl-oxo → Oxidized Transition in a Nonpumping Mutant of Cytochrome c Oxidase. Journal of Biological Chemistry, 2004, 279, 52558-52565.	1.6	75
33	Magic-angle spinning solid-state NMR of a 144ÂkDa membrane protein complex: E. coli cytochrome bo3 oxidase. Journal of Biomolecular NMR, 2006, 36, 55-71.	1.6	75
34	Comparative Genomics and Site-Directed Mutagenesis Support the Existence of Only One Input Channel for Protons in the C-Family (<i>cbb</i> ₃ Oxidase) of Hemeâ^Copper Oxygen Reductases. Biochemistry, 2007, 46, 9963-9972.	1.2	70
35	The Entry Point of the K-Proton-Transfer Pathway in CytochromecOxidaseâ€. Biochemistry, 2002, 41, 10794-10798.	1.2	68
36	Subunit CydX of <i>Escherichia coli</i> cytochrome <i>bd</i> ubiquinol oxidase is essential for assembly and stability of the diâ€heme active site. FEBS Letters, 2014, 588, 1537-1541.	1.3	68

#	Article	IF	CITATIONS
37	Magnetic Circular Dichroism Used To Examine the Interaction of Escherichia coli Cytochrome bd with Ligands. Biochemistry, 1999, 38, 740-750.	1.2	65
38	The cytochromes ofEscherichia coli. FEMS Microbiology Letters, 1987, 46, 387-399.	0.7	61
39	Identification of a ferryl intermediate of Escherichia coli cytochrome d terminal oxidase by resonance Raman spectroscopy. Biochemistry, 1991, 30, 11485-11489.	1.2	61
40	Perfusion-induced redox differences in cytochrome c oxidase: ATR/FT-IR spectroscopy. FEBS Letters, 2001, 505, 63-67.	1.3	59
41	The room temperature reaction of carbon monoxide and oxygen with the cytochrome bd quinol oxidase from Escherichia coli. Biochemistry, 1994, 33, 15110-15115.	1.2	57
42	Proteolysis of the cytochrome d complex with trypsin and chymotrypsin localizes a quinol oxidase domain. Biochemistry, 1991, 30, 3401-3406.	1.2	56
43	Helix Switching of a Key Active-Site Residue in the Cytochromecbb3Oxidasesâ€. Biochemistry, 2005, 44, 10766-10775.	1.2	56
44	A rapid and robust method for selective isotope labeling of proteins. Methods, 2011, 55, 370-378.	1.9	55
45	Cloning and expression of the gene encoding the soluble cytochrome b562 of Escherichia coli. FEBS Journal, 1991, 202, 309-313.	0.2	54
46	Kinetics of Electron and Proton Transfer during the Reaction of Wild Type and Helix VI Mutants of Cytochrome bo3 with Oxygen. Biochemistry, 1996, 35, 13673-13680.	1.2	52
47	Proton transfer in ba3 cytochrome c oxidase from Thermus thermophilus. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 650-657.	0.5	52
48	Vibrational Modes of Ubiquinone in Cytochrome bo3 from Escherichia coli Identified by Fourier Transform Infrared Difference Spectroscopy and Specific 13C Labeling. Biochemistry, 1999, 38, 14683-14689.	1.2	50
49	Expression and mutagenesis of the NqrC subunit of the NQR respiratory Na+pump fromVibrio choleraewith covalently attached FMN. FEBS Letters, 2001, 492, 45-49.	1.3	50
50	Resonance Raman Spectroscopic Identification of a Histidine Ligand ofb595and the Nature of the Ligation of Chlorindin the Fully ReducedEscherichia coliCytochromebdOxidaseâ€. Biochemistry, 1996, 35, 2403-2412.	1.2	48
51	A pH-Dependent Polarity Change at the Binuclear Center of Reduced CytochromecOxidase Detected by FTIR Difference Spectroscopy of the CO Adductâ€. Biochemistry, 1996, 35, 9446-9450.	1.2	47
52	Substitution of Lysine-362 in a Putative Proton-Conducting Channel in the CytochromecOxidase fromRhodobacter sphaeroidesBlocks Turnover with O2but Not with H2O2. Biochemistry, 1998, 37, 3062-3067.	1.2	46
53	Spectral and Kinetic Equivalence of Oxidized Cytochrome c Oxidase as Isolated and $\hat{a} \in \hat{c}$ Activated $\hat{a} \in \hat{c}$ by Reoxidation. Journal of Biological Chemistry, 2006, 281, 30319-30325.	1.6	45
54	Site-Directed Mutagenesis of Residues Lining a Putative Proton Transfer Pathway in CytochromecOxidase fromRhodobacter sphaeroidesâ€. Biochemistry, 1996, 35, 13089-13093.	1.2	44

#	Article	IF	CITATIONS
55	Replacing Asn207 by Aspartate at the Neck of the D Channel in the aa3-Type Cytochrome c Oxidase from Rhodobacter sphaeroides Results in Decoupling the Proton Pump. Biochemistry, 2006, 45, 14064-14074.	1.2	44
56	Impaired proton pumping in cytochrome c oxidase upon structural alteration of the D pathway. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 897-903.	0.5	43
57	Magnetic-circular-dichroism studies of Escherichia coli cytochrome bo. Identification of high-spin ferric, low-spin ferric and ferryl [Fe(IV)] forms of heme o. FEBS Journal, 1994, 219, 595-602.	0.2	42
58	Role of the K-Channel in the pH-Dependence of the Reaction of CytochromecOxidase with Hydrogen Peroxideâ€. Biochemistry, 2001, 40, 9695-9708.	1.2	41
59	Strong Excitonic Interactions in the Oxygen-Reducing Site of <i>bd</i> -Type Oxidase:  The Fe-to-Fe Distance between Hemes <i>d</i> and <i>b</i> ₅₉₅ is 10 Ã Biochemistry, 2008, 47, 1752-1759.	1.2	41
60	The quinone-binding sites of the cytochrome bo3 ubiquinol oxidase from Escherichia coli. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1924-1932.	0.5	41
61	Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 954-963.	0.5	41
62	Distinct forms of the haemo-Cu binuclear site of oxidised cytochromebofromEscherichia coli. FEBS Letters, 1993, 319, 151-154.	1.3	40
63	Characterization of the Exchangeable Protons in the Immediate Vicinity of the Semiquinone Radical at the QH Site of the Cytochrome bo3 from Escherichia coli. Journal of Biological Chemistry, 2006, 281, 16879-16887.	1.6	39
64	Single-electron photoreduction of the PM intermediate of cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1122-1132.	0.5	38
65	Subunit II of the Cytochromebo3Ubiquinol Oxidase fromEscherichia colils a Lipoprotein. Biochemistry, 1997, 36, 11298-11303.	1.2	36
66	Site-Directed Mutation of the Highly Conserved Region near the Q-Loop of the Cytochrome bd Quinol Oxidase from Escherichia coli Specifically Perturbs Heme b595. Biochemistry, 2001, 40, 8548-8556.	1.2	36
67	Heme–heme and heme–ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1657-1664.	0.5	36
68	Kinetic design of the respiratory oxidases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11057-11062.	3.3	36
69	Division of labor in transhydrogenase by alternating proton translocation and hydride transfer. Science, 2015, 347, 178-181.	6.0	36
70	Identification of the Residues Involved in Stabilization of the Semiquinone Radical in the High-Affinity Ubiquinone Binding Site in Cytochrome bo3 from Escherichia coli by Site-Directed Mutagenesis and EPR Spectroscopy. Biochemistry, 2002, 41, 10675-10679.	1.2	35
71	Entrance of the proton pathway in <i>cbb</i> ₃ -type heme-copper oxidases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17661-17666.	3.3	35
72	The Diheme Cytochrome <i>c</i> ₄ from <i>Vibrio cholerae</i> Is a Natural Electron Donor to the Respiratory <i>cbb</i> ₃ Oxygen Reductase. Biochemistry, 2010, 49, 7494-7503.	1.2	34

#	Article	IF	CITATIONS
73	Characterization of the Type III sulfide:quinone oxidoreductase from Caldivirga maquilingensis and its membrane binding. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 266-275.	0.5	34
74	CtaM Is Required for Menaquinol Oxidase <i>aa</i> ₃ Function in Staphylococcus aureus. MBio, 2016, 7, .	1.8	34
75	Single-particle cryo-EM studies of transmembrane proteins in SMA copolymer nanodiscs. Chemistry and Physics of Lipids, 2019, 221, 114-119.	1.5	34
76	The fully oxidized form of the cytochrome <i>bd</i> quinol oxidase from <i>E. coli</i> does not participate in the catalytic cycle: Direct evidence from rapid kinetics studies. FEBS Letters, 2008, 582, 3705-3709.	1.3	33
77	Properties of Arg481 Mutants of the <i>aa</i> ₃ -Type Cytochrome <i>c</i> Oxidase from <i>Rhodobacter sphaeroides</i> Suggest That neither R481 nor the Nearby D-Propionate of Heme <i>a</i> ₃ Is Likely To Be the Proton Loading Site of the Proton Pump. Biochemistry, 2009, 48. 7123-7131.	1.2	33
78	Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry To Map the Quinol Binding Site of Cytochrome bo3 from Escherichia coli. Biochemistry, 1998, 37, 9884-9888.	1.2	32
79	Cytochrome O from Escherichia coli Is Structurally Related to Cytochrome aa3. Annals of the New York Academy of Sciences, 1988, 550, 314-324.	1.8	31
80	A Conserved Glutamic Acid in Helix VI of Cytochrome bo3 Influences a Key Step in Oxygen Reduction. Biochemistry, 1997, 36, 13736-13742.	1.2	31
81	Q-Band ENDOR (Electron Nuclear Double Resonance) of the High-Affinity Ubisemiquinone Center in Cytochromebo3fromEscherichia coliâ€. Biochemistry, 2000, 39, 3169-3175.	1.2	31
82	Glutamate 107 in Subunit I of the CytochromebdQuinol Oxidase fromEscherichia colils Protonated and near the Hemed/Hemeb595Binuclear Centerâ€. Biochemistry, 2007, 46, 3270-3278.	1.2	31
83	Oriented immobilization and electron transfer to the cytochrome c oxidase. Journal of Solid State Electrochemistry, 2011, 15, 105-114.	1.2	31
84	Interactions of Intermediate Semiquinone with Surrounding Protein Residues at the Q _H Site of Wild-Type and D75H Mutant Cytochrome <i>bo</i> ₃ from <i>Escherichia coli</i> . Biochemistry, 2012, 51, 3827-3838.	1.2	31
85	Partial Steps of Charge Translocation in the Nonpumping N139L Mutant of <i>Rhodobacter sphaeroides</i> Cytochrome <i>c</i> Oxidase with a Blocked D-Channel. Biochemistry, 2010, 49, 3060-3073.	1.2	30
86	Resonance Raman studies of Escherichia coli cytochrome bd oxidase. Selective enhancement of the three heme chromophores of the "as-isolated" enzyme and characterization of the cyanide adduct. Biochemistry, 1995, 34, 12144-12151.	1.2	29
87	Tryptophan-136 in Subunit II of Cytochromebo3fromEscherichiacoliMay Participate in the Binding of Ubiquinolâ€. Biochemistry, 1998, 37, 11806-11811.	1.2	29
88	Characterization of Mutants That Change the Hydrogen Bonding of the Semiquinone Radical at the QH Site of the Cytochrome bo3 from Escherichia coli. Journal of Biological Chemistry, 2007, 282, 8777-8785.	1.6	29
89	Nitrogen and proton ENDOR of cytochrome d, hemin, and metmyoglobin in frozen solutions. Journal of the American Chemical Society, 1993, 115, 10293-10299.	6.6	28
90	Identification of the Nitrogen Donor Hydrogen Bonded with the Semiquinone at the Q _H Site of the Cytochrome <i>bo</i> ₃ from <i>Escherichia coli</i> . Journal of the American Chemical Society, 2008, 130, 15768-15769.	6.6	28

#	Article	lF	CITATIONS
91	Decoupling Mutations in the D-Channel of the aa3-Type Cytochrome c Oxidase from Rhodobacter sphaeroides Suggest That a Continuous Hydrogen-Bonded Chain of Waters Is Essential for Proton Pumping. Biochemistry, 2010, 49, 4476-4482.	1.2	28
92	Functional interactions between membrane-bound transporters and membranes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15763-15767.	3.3	27
93	The unusual redox properties of C-type oxidases. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1892-1899.	0.5	27
94	Some recent contributions of FTIR difference spectroscopy to the study of cytochrome oxidase1. FEBS Letters, 2003, 555, 2-7.	1.3	26
95	A New Ruthenium Complex To Study Single-Electron Reduction of the Pulsed OH State of Detergent-Solubilized Cytochrome Oxidase. Biochemistry, 2007, 46, 14610-14618.	1.2	26
96	Cryo-EM structures of <i>Escherichia coli</i> cytochrome <i>bo</i> _{<i>3</i>} reveal bound phospholipids and ubiquinone-8 in a dynamic substrate binding site. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
97	Characterization of the Semiquinone Radical Stabilized by the Cytochrome aa3-600 Menaquinol Oxidase of Bacillus subtilis. Journal of Biological Chemistry, 2010, 285, 18241-18251.	1.6	24
98	Type 2 NADH Dehydrogenase Is the Only Point of Entry for Electrons into the Streptococcus agalactiae Respiratory Chain and Is a Potential Drug Target. MBio, 2018, 9, .	1.8	24
99	Mutation of a single residue in the <i>ba</i> ₃ oxidase specifically impairs protonation of the pump site. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3397-3402.	3.3	23
100	Direct Evidence for the Protonation of Aspartate-75, Proposed To Be at a Quinol Binding Site, upon Reduction of Cytochromebo3fromEscherichia coliâ€. Biochemistry, 2001, 40, 1077-1082.	1.2	22
101	Resonance raman study on axial ligands of heme irons in cytochromebd-type ubiquinol oxidase fromEscherichia coli. Biospectroscopy, 1995, 1, 305-311.	0.7	21
102	Matrix-assisted laser desorption ionization mass spectrometry of membrane proteins: Demonstration of a simple method to determine subunit molecular weights of hydrophobic subunits. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1330, 113-120.	1.4	21
103	Conformational transitions and molecular hysteresis of cytochrome c oxidase: Varying the redox state by electronic wiring. Soft Matter, 2010, 6, 5523.	1.2	21
104	Structure of the cytochrome <i>aa</i> _{<i>3</i>} -600 heme-copper menaquinol oxidase bound to inhibitor HQNO shows TMO is part of the quinol binding site. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 872-876.	3.3	21
105	Solid-State NMR Study of the Charge-Transfer Complex between Ubiquinone-8 and Disulfide Bond Generating Membrane Protein DsbB. Journal of the American Chemical Society, 2011, 133, 4359-4366.	6.6	20
106	Exploring by Pulsed EPR the Electronic Structure of Ubisemiquinone Bound at the QH Site of Cytochrome bo3 from Escherichia coli with in Vivo 13C-Labeled Methyl and Methoxy Substituents. Journal of Biological Chemistry, 2011, 286, 10105-10114.	1.6	20
107	Cell-free synthesis of cytochrome bo3 ubiquinol oxidase in artificial membranes. Analytical Biochemistry, 2012, 423, 39-45.	1.1	20
108	A Ligand-Exchange Mechanism of Proton Pumping Involving Tyrosine-422 of Subunit I of Cytochrome Oxidase Is Ruled Outâ€. Biochemistry, 1996, 35, 824-828.	1.2	19

#	Article	IF	CITATIONS
109	Dissection of Hydrogen Bond Interaction Network around an Iron–Sulfur Cluster by Site-Specific Isotope Labeling of Hyperthermophilic Archaeal Rieske-Type Ferredoxin. Journal of the American Chemical Society, 2012, 134, 19731-19738.	6.6	19
110	Escherichia coli Auxotroph Host Strains for Amino Acid-Selective Isotope Labeling of Recombinant Proteins. Methods in Enzymology, 2015, 565, 45-66.	0.4	19
111	X-ray transparent microfluidic platforms for membrane protein crystallization with microseeds. Lab on A Chip, 2018, 18, 944-954.	3.1	19
112	The carboxy-terminal insert in the Q-loop is needed for functionality of Escherichia coli cytochrome bd-I. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148175.	0.5	19
113	Evolution of the cytochrome <i>bd</i> oxygen reductase superfamily and the function of CydAA' in Archaea. ISME Journal, 2021, 15, 3534-3548.	4.4	18
114	Proton Dynamics at the Membrane Surface. Biophysical Journal, 2016, 110, 1909-1911.	0.2	17
115	All the O ₂ Consumed by <i>Thermus thermophilus</i> Cytochrome ba ₃ Is Delivered to the Active Site through a Long, Open Hydrophobic Tunnel with Entrances within the Lipid Bilayer. Biochemistry, 2016, 55, 1265-1278.	1.2	17
116	Location of the Substrate Binding Site of the Cytochrome <i>bo</i> ₃ Ubiquinol Oxidase from <i>Escherichia coli</i> . Journal of the American Chemical Society, 2017, 139, 8346-8354.	6.6	17
117	Detergent-solubilizedEscherichia colicytochromebo3ubiquinol oxidase: a monomeric, not a dimeric complex. FEBS Letters, 1999, 457, 153-156.	1.3	16
118	Structure Changes upon Deprotonation of the Proton Release Group in the Bacteriorhodopsin Photocycle. Biophysical Journal, 2012, 103, 444-452.	0.2	16
119	Review and Hypothesis. New insights into the reaction mechanism of transhydrogenase: Swivelling the dlll component may gate the proton channel. FEBS Letters, 2015, 589, 2027-2033.	1.3	16
120	Role of respiratory <scp>NADH</scp> oxidation in the regulation of <i>Staphylococcus aureus</i> virulence. EMBO Reports, 2020, 21, e45832.	2.0	16
121	Blocking the K-pathway still allows rapid one-electron reduction of the binuclear center during the anaerobic reduction of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 619-624.	0.5	15
122	Timing of Electron and Proton Transfer in the <i>ba</i> ₃ Cytochrome <i>c</i> Oxidase from <i>Thermus thermophilus</i> . Biochemistry, 2012, 51, 4507-4517.	1.2	15
123	Characterization of the nitric oxide reductase from <i>Thermus thermophilus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12613-12618.	3.3	15
124	The electron distribution in the "activated―state of cytochrome c oxidase. Scientific Reports, 2018, 8, 7502.	1.6	15
125	Critical structural role of R481 in cytochrome c oxidase from Rhodobacter sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1272-1275.	0.5	14
126	The Semiquinone at the Q _i Site of the <i>bc</i> ₁ Complex Explored Using HYSCORE Spectroscopy and Specific Isotopic Labeling of Ubiquinone in <i>Rhodobacter sphaeroides</i> via ¹³ C Methionine and Construction of a Methionine Auxotroph. Biochemistry, 2014, 53, 6022-6031.	1.2	14

#	Article	IF	CITATIONS
127	Microcin J25 inhibits ubiquinol oxidase activity of purified cytochrome bd-I from Escherichia coli. Biochimie, 2019, 160, 141-147.	1.3	14
128	Discovery of Prenyltransferase Inhibitors with <i>In Vitro</i> and <i>In Vivo</i> Antibacterial Activity. ACS Infectious Diseases, 2020, 6, 2979-2993.	1.8	14
129	The three-spin intermediate at the O–O cleavage and proton-pumping junction in heme–Cu oxidases. Science, 2021, 373, 1225-1229.	6.0	13
130	Q-Band ENDOR (Electron Nuclear Double Resonance) of the Hemeo3Liganding Environment at the Binuclear Center in Cytochromebo3fromEscherichia coli. Journal of the American Chemical Society, 2000, 122, 8712-8716.	6.6	12
131	Critical Role of Water Molecules in Proton Translocation by the Membrane-Bound Transhydrogenase. Structure, 2017, 25, 1111-1119.e3.	1.6	12
132	Flash-Photolysis of Fully Reduced and Mixed-Valence CO-Bound <i>Rhodobacter sphaeroides</i> Cytochrome <i>c</i> Oxidase:  Heme Spectral Shifts. Biochemistry, 2007, 46, 12568-12578.	1.2	11
133	Proton pumping by an inactive structural variant of cytochrome c oxidase. Journal of Inorganic Biochemistry, 2014, 140, 6-11.	1.5	11
134	Functional importance of Glutamate-445 and Glutamate-99 in proton-coupled electron transfer during oxygen reduction by cytochrome bd from Escherichia coli. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 577-590.	0.5	11
135	Factors Determining Electron-Transfer Rates in CytochromecOxidase:Â Studies of the FQ(I-391) Mutant of theRhodobacter sphaeroidesEnzymeâ€. Biochemistry, 1997, 36, 11787-11796.	1.2	10
136	Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 712-724.	0.5	10
137	Water as a Cofactor in the Unidirectional Light-Driven Proton Transfer Steps in Bacteriorhodopsin. Photochemistry and Photobiology, 2006, 82, 1398-1405.	1.3	9
138	Plasticity in the High Affinity Menaquinone Binding Site of the Cytochrome <i>aa</i> ₃ -600 Menaquinol Oxidase from <i>Bacillus subtilis</i> . Biochemistry, 2015, 54, 5030-5044.	1.2	9
139	Q-Band Electron-Nuclear Double Resonance Reveals Out-of-Plane Hydrogen Bonds Stabilize an Anionic Ubisemiquinone in Cytochrome bo3 from Escherichia coli. Biochemistry, 2016, 55, 5714-5725.	1.2	9
140	Functional Importance of a Pair of Conserved Glutamic Acid Residues and of Ca ²⁺ Binding in the <i>cbb</i> ₃ -Type Oxygen Reductases from <i>Rhodobacter sphaeroides</i> and <i>Vibrio cholerae</i> . Biochemistry, 2012, 51, 7290-7296.	1.2	8
141	Conformational coupling between the active site and residues within the KC-channel of theVibrio cholerae cbb3-type (C-family) oxygen reductase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4419-E4428.	3.3	8
142	The two transmembrane helices of CcoP are sufficient for assembly of the cbb3-type heme-copper oxygen reductase from Vibrio cholerae. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1231-1239.	0.5	8
143	Searching for the low affinity ubiquinone binding site in cytochrome bo3 from Escherichia coli. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 366-370.	0.5	8
144	Role of the tightly bound quinone for the oxygen reaction of cytochrome <i>bo</i> _{<i>3</i>} oxidase from <i>Escherichia coli</i> . FEBS Letters, 2018, 592, 3380-3387.	1.3	8

#	Article	IF	CITATIONS
145	Identification of a cytochrome bc1-aa3 supercomplex in Rhodobacter sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148433.	0.5	8
146	Alternate pathways for NADH oxidation in Thermus thermophilus using type 2 NADH dehydrogenases. Biological Chemistry, 2013, 394, 667-676.	1.2	7
147	X-ray transparent microfluidic chips for high-throughput screening and optimization of in meso membrane protein crystallization. Biomicrofluidics, 2017, 11, 024118.	1.2	7
148	Unpaired Electron Spin Density Distribution across Reduced [2Fe-2S] Cluster Ligands by ¹³ C _β -Cysteine Labeling. Inorganic Chemistry, 2018, 57, 741-746.	1.9	7
149	Time-Resolved Electrometric Study of the F→O Transition in Cytochrome c Oxidase. The Effect of Zn2+ Ions on the Positive Side of the Membrane. Biochemistry (Moscow), 2021, 86, 105-122.	0.7	7
150	Examination of the Reaction of Fully Reduced Cytochrome Oxidase with Hydrogen Peroxide by Flow-Flash Spectroscopyâ€. Biochemistry, 1999, 38, 16016-16023.	1.2	6
151	Nitroxide spin labels as EPR reporters of the relaxation and magnetic properties of the heme–copper site in cytochrome bo 3, E. coli. Journal of Biological Inorganic Chemistry, 2010, 15, 1255-1264.	1.1	6
152	Kinetics and Intermediates of the Reaction of Fully Reduced <i>Escherichia coli bo</i> ₃ Ubiquinol Oxidase with O ₂ . Biochemistry, 2014, 53, 5393-5404.	1.2	6
153	Dynamics of the K ^B Proton Pathway in Cytochrome <i>ba</i> ₃ from <i>Thermus thermophilus</i> . Israel Journal of Chemistry, 2017, 57, 424-436.	1.0	6
154	The Ubiquinol Binding Site of Cytochrome <i>bo</i> ₃ from <i>Escherichia coli</i> Accommodates Menaquinone and Stabilizes a Functional Menasemiquinone. Biochemistry, 2019, 58, 4559-4569.	1.2	6
155	<i>Escherichia coli</i> amino acid auxotrophic expression host strains for investigating protein structure–function relationships. Journal of Biochemistry, 2021, 169, 387-394.	0.9	6
156	Immunochemical analysis of the membrane-bound succinate dehydrogenase ofEscherichia coli. FEBS Letters, 1982, 142, 81-87.	1.3	5
157	Cytochrome <i>aa</i> ₃ Oxygen Reductase Utilizes the Tunnel Observed in the Crystal Structures To Deliver O ₂ for Catalysis. Biochemistry, 2018, 57, 2150-2161.	1.2	5
158	Specific inhibition of proton pumping by the T315V mutation in the K channel of cytochrome ba from Thermus thermophilus. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148450.	0.5	5
159	Energy transfer between the nicotinamide nucleotide transhydrogenase and ATP synthase of Escherichia coli. Scientific Reports, 2021, 11, 21234.	1.6	4
160	The <scp>CO</scp> Photodissociation and Recombination Dynamics of the W172Y/F282T Ligand Channel Mutant of <i>Rhodobacter sphaeroides aa</i> _{<i>3</i>} Cytochrome <i>c</i> Oxidase. Photochemistry and Photobiology, 2016, 92, 410-419.	1.3	3
161	Mechanism of proton transfer through the KC proton pathway in the Vibrio cholerae cbb3 terminal oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1191-1198.	0.5	3
162	Differential effects of glutamate-286 mutations in the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides and the cytochrome bo3 ubiquinol oxidase from Escherichia coli. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1342-1348.	0.5	2

#	Article	IF	CITATIONS
163	The K ^C Channel in the <i>cbb</i> ₃ -Type Respiratory Oxygen Reductase from Rhodobacter capsulatus Is Required for Both Chemical and Pumped Protons. Journal of Bacteriology, 2014, 196, 1825-1832.	1.0	2
164	The oligomeric state of the Caldivirga maquilingensis type III sulfide:Quinone Oxidoreductase is required for membrane binding. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148132.	0.5	2
165	The Monoheme <i>c</i> Subunit of Respiratory Alternative Complex III Is Not Essential for Electron Transfer to Cytochrome <i>aa</i> ₃ in Flavobacterium johnsoniae. Microbiology Spectrum, 2021, 9, e0013521.	1.2	2
166	Rapid Formation of a Semiquinone Species on Oxidation of Quinol by the Cytochrome bo 3 Oxidase from Escherichia coli. , 1998, , 33-39.		2
167	Ligand binding properties of bacterial oxidases in relation to cytochrome- <i>c</i> oxidase. Biochemical Society Transactions, 1992, 20, 240S-240S.	1.6	1
168	Product-controlled steady-state kinetics between cytochrome aa3 from Rhodobacter sphaeroides and equine ferrocytochrome c analyzed by a novel spectrophotometric approach. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1894-1900.	0.5	1
169	Characterization and X-ray structure of the NADH-dependent coenzyme A disulfide reductase from Thermus thermophilus. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 148080.	0.5	1
170	Immunochemical analysis of membrane-bound antigens from <i>Escherichia coli</i> which have succinate dehydrogenase activity. Biochemical Society Transactions, 1984, 12, 800-801.	1.6	0
171	Respiration in Archaea and Bacteria: Diversity of Prokaryotic Electron Transport Carriers. Davide Zannoni, Advances in Photosynthesis and Respiration (Series Editor, Govindjee), Kluwer Academic Publishers, Dordrecht, The Netherlands, Volume 15, 2004, 350 pp, ISBN 1-4020-2001-5, Price EUR 175.00, USD 193.00, GBP 121.00, Photosynthesis Research, 2005, 83, 363-364.	1.6	Ο

Optimization of expression condition and purification of cbb_3-type cytochrome c oxidase(Heme) Tj ETQq0.00 rgBT /Overlock 2000

173	Replacing Arg70 by Histidine in The Cytochrome Aa 3 â€600 Menaquinol Oxidase from Bacillus Subtilis Changes The Nitrogen Interacting with The Semiquinone Formed at The Q h Site But Does Not Eliminate Catalytic Function. FASEB Journal. 2015. 29. LB110.	0.2	Ο	
-----	---	-----	---	--