Christopher K Ober

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4217872/publications.pdf

Version: 2024-02-01

547 29,731 80 156
papers citations h-index g-index

593 593 593 593 28717

593 593 593 28717 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Polymerâ€Grafted Nanoparticles (PGNs) with Adjustable Graftâ€Density and Interparticle Hydrogen Bonding Interaction. Macromolecular Rapid Communications, 2022, 43, e2100629.	2.0	3
2	Effect of monomer hydrophilicity on <scp>ARGET–ATRP</scp> kinetics in aqueous miniâ€emulsion polymerization. Journal of Polymer Science, 2022, 60, 666-673.	2.0	4
3	Effects of Amphiphilic Polypeptoid Side Chains on Polymer Surface Chemistry and Hydrophilicity. ACS Applied Materials & Samp; Interfaces, 2022, 14, 7340-7349.	4.0	5
4	Influence of spin casting solvent on the selfâ€assembly of siliconâ€containing block copolymer thin films via high temperature thermal treatment. Polymer International, 2022, 71, 426-435.	1.6	3
5	Real time quantification of mixed ion and electron transfer associated with the doping of poly(3-hexylthiophene). Journal of Materials Chemistry C, 2022, 10, 7251-7262.	2.7	5
6	Investigation of N-Substituted Morpholine Structures in an Amphiphilic PDMS-Based Antifouling and Fouling-Release Coating. Biomacromolecules, 2022, 23, 2697-2712.	2.6	12
7	High-Performance Chain Scissionable Resists for Extreme Ultraviolet Lithography: Discovery of the Photoacid Generator Structure and Mechanism. Chemistry of Materials, 2022, 34, 6170-6181.	3.2	11
8	Strong Polyelectrolyte Brushes via Alternating Copolymers of Styrene and Maleimides: Synthesis, Properties, and Stability. Macromolecules, 2022, 55, 5291-5300.	2.2	8
9	High-Resolution Nanopatterning of Free-Standing, Self-Supported Helical Polypeptide Rod Brushes via Electron Beam Lithography. ACS Macro Letters, 2021, 10, 755-759.	2.3	4
10	Amphiphilic Nitroxide-Bearing Siloxane-Based Block Copolymer Coatings for Enhanced Marine Fouling Release. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28790-28801.	4.0	17
11	Using Liquid Crystals to Probe the Organization of Helical Polypeptide Brushes Induced by Solvent Pretreatment. Macromolecules, 2021, 54, 7786-7795.	2.2	4
12	lonic Dopantâ€Induced Ordering Enhances the Thermoelectric Properties of a Polythiopheneâ€Based Block Copolymer. Advanced Functional Materials, 2021, 31, 2106991.	7.8	5
13	New Approaches to EUV Photoresists: Studies of Polyacetals and Polypeptoids to Expand the Photopolymer Toolbox. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2021, 34, 71-74.	0.1	5
14	Silicaâ€PMMA hairy nanoparticles prepared via phase transferâ€assisted aqueous miniemulsion atom transfer radical polymerization. Journal of Polymer Science, 2020, 58, 2310-2316.	2.0	4
15	Quantifying internal charge transfer and mixed ion-electron transfer in conjugated radical polymers. Chemical Science, 2020, 11, 9962-9970.	3.7	13
16	Materials systems for 2-photon lithography. , 2020, , 143-174.		1
17	Thermal Stability of π-Conjugated <i>n</i> -Ethylene-Glycol-Terminated Quaterthiophene Oligomers: A Computational and Experimental Study. ACS Macro Letters, 2020, 9, 295-300.	2.3	2
18	Terminology of polymers in advanced lithography (IUPAC Recommendations 2020). Pure and Applied Chemistry, 2020, 92, 1861-1891.	0.9	2

#	Article	IF	Citations
19	Block copolymers containing stable radical and fluorinated blocks with long-range ordered morphologies prepared by anionic polymerization. Polymer Chemistry, 2019, 10, 5094-5102.	1.9	8
20	Chemical reaction and diffusion kinetics during laser-induced submillisecond heating for lithographic applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 041601.	0.6	2
21	Three-Dimensional Printing of Hierarchical Porous Architectures. Chemistry of Materials, 2019, 31, 10017-10022.	3.2	18
22	Aqueous one-pot synthesis of epoxy-functional diblock copolymer worms from a single monomer: new anisotropic scaffolds for potential charge storage applications. Polymer Chemistry, 2019, 10, 194-200.	1.9	35
23	The Role of Hydrogen Bonding in Peptoid-Based Marine Antifouling Coatings. Macromolecules, 2019, 52, 1287-1295.	2.2	41
24	Structure Control of a π-Conjugated Oligothiophene-Based Liquid Crystal for Enhanced Mixed Ion/Electron Transport Characteristics. ACS Nano, 2019, 13, 7665-7675.	7.3	29
25	Polymer-Based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 241-264.	3.3	118
26	Polymer Brushes: Polymer Brushes on Hexagonal Boron Nitride (Small 19/2019). Small, 2019, 15, 1970099.	5.2	2
27	Entropic death of nonpatterned and nanopatterned polyelectrolyte brushes. Journal of Polymer Science Part A, 2019, 57, 1283-1295.	2.5	7
28	Spatially Controlled Transience of Grapheneâ€Polymer Electronics with Silicon Singulation. Advanced Functional Materials, 2019, 29, 1900592.	7.8	2
29	Polymer Brushes on Hexagonal Boron Nitride. Small, 2019, 15, 1805228.	5.2	18
30	Metal Organic Cluster Photoresists for EUV Lithography. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 711-714.	0.1	3
31	Stability and microbial toxicity of HfO ₂ and ZrO ₂ nanoparticles for photolithography. Green Materials, 2019, 7, 109-117.	1.1	3
32	Selfâ€Assembly Behavior of an Oligothiopheneâ€Based Conjugated Liquid Crystal and Its Implication for lonic Conductivity Characteristics. Advanced Functional Materials, 2019, 29, 1805220.	7.8	20
33	Radical sensitive Zinc-based nanoparticle EUV photoresists. , 2019, , .		3
34	Development of metal organic cluster EUV photoresists. , 2019, , .		1
35	Metal organic cluster photoresists: new metal oxide systems. , 2019, , .		0
36	Flexible Hydrophobic Antifouling Coating with Oriented Nanotopography and Nonleaking Capsaicin. ACS Applied Materials & Diterfaces, 2018, 10, 9718-9726.	4.0	45

#	Article	IF	CITATIONS
37	Mini Monomer Encapsulated Emulsion Polymerization of PMMA Using Aqueous ARGET ATRP. ACS Macro Letters, 2018, 7, 459-463.	2.3	23
38	In pursuit of Moore's Law: polymer chemistry in action. Polymer Journal, 2018, 50, 45-55.	1.3	17
39	Biologically Complex Planar Cell Plasma Membranes Supported on Polyelectrolyte Cushions Enhance Transmembrane Protein Mobility and Retain Native Orientation. Langmuir, 2018, 34, 1061-1072.	1.6	35
40	Impact of the synthesis method on the solid-state charge transport of radical polymers. Journal of Materials Chemistry C, 2018, 6, 111-118.	2.7	48
41	Facile Preparation of Epoxide-Functionalized Surfaces via Photocurable Copolymer Coatings and Subsequent Immobilization of Iminodiacetic Acids. ACS Applied Materials & Emp; Interfaces, 2018, 10, 40871-40879.	4.0	18
42	Progress in metal organic cluster EUV photoresists. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	7
43	Materials Overview for 2-Photon 3D Printing Applications. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 425-429.	0.1	2
44	The Challenges of Highly Sensitive EUV Photoresists. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 261-265.	0.1	8
45	Synthesis, Processing, and Characterization of Helical Polypeptide Rod–Coil Mixed Brushes. ACS Macro Letters, 2018, 7, 1186-1191.	2.3	7
46	Charge Transport in Conjugated Polymers with Pendent Stable Radical Groups. Chemistry of Materials, 2018, 30, 4799-4807.	3.2	33
47	Electroluminescence from Solution-Processed Pinhole-Free Nanometer-Thickness Layers of Conjugated Polymers. Nano Letters, 2018, 18, 5382-5388.	4.5	4
48	UV-Triggered Transient Electrospun Poly(propylene carbonate)/Poly(phthalaldehyde) Polymer Blend Fiber Mats. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28928-28935.	4.0	6
49	Engineered nanomaterials and human health: Part 1. Preparation, functionalization and characterization (IUPAC Technical Report). Pure and Applied Chemistry, 2018, 90, 1283-1324.	0.9	41
50	Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC) Tj ETQq0 0 0 rgB	3T /Qvgrloc	:k 10 Tf 50 222
51	Metal–Organic Framework-Inspired Metal-Containing Clusters for High-Resolution Patterning. Chemistry of Materials, 2018, 30, 4124-4133.	3.2	65
52	EUV photolithography: resist progress in metal–organic complex photoresists. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2018, 18, 1.	1.0	17
53	Patterning mechanism of metal based hybrid EUV resists. , 2018, , .		1
54	EUV photolithography: resist progress and challenges. , 2018, , .		9

#	Article	IF	CITATIONS
55	EUV metal oxide hybrid photoresists: ultra-small structures for high-resolution patterning. , 2018, , .		2
56	Fifty years of the Baier curve: progress in understanding antifouling coatings. Green Materials, 2017, 5, 1-3.	1.1	16
57	Model Amphiphilic Block Copolymers with Tailored Molecular Weight and Composition in PDMS-Based Films to Limit Soft Biofouling. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16505-16516.	4.0	30
58	<i>>50th Anniversary Perspective</i> : Polymer Brushes: Novel Surfaces for Future Materials. Macromolecules, 2017, 50, 4089-4113.	2.2	393
59	Transient Fiber Mats of Electrospun Poly(Propylene Carbonate) Composites with Remarkable Mechanical Strength. ACS Applied Materials & Samp; Interfaces, 2017, 9, 25495-25505.	4.0	12
60	Morphology of Nanostructured Polymer Brushes Dependent on Production and Treatment. Macromolecules, 2017, 50, 4715-4724.	2.2	12
61	Ultrafast Self-Assembly of Sub-10 nm Block Copolymer Nanostructures by Solvent-Free High-Temperature Laser Annealing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31317-31324.	4.0	33
62	Role of Backbone Chemistry and Monomer Sequence in Amphiphilic Oligopeptide- and Oligopeptoid-Functionalized PDMS- and PEO-Based Block Copolymers for Marine Antifouling and Fouling Release Coatings. Macromolecules, 2017, 50, 2656-2667.	2.2	66
63	A dress code for block copolymers. Nature Nanotechnology, 2017, 12, 507-508.	15.6	7
64	Nanoparticle photoresist studies for EUV lithography. Proceedings of SPIE, 2017, , .	0.8	19
65	Perpendicular Orientation Control without Interfacial Treatment of RAFT-Synthesized High-χ Block Copolymer Thin Films with Sub-10 nm Features Prepared via Thermal Annealing. ACS Applied Materials & Interfaces, 2017, 9, 31266-31278.	4.0	57
66	Reduced Lateral Confinement and Its Effect on Stability in Patterned Strong Polyelectrolyte Brushes. Langmuir, 2017, 33, 3296-3303.	1.6	16
67	Oligopeptide-modified hydrophobic and hydrophilic polymers as antifouling coatings. Green Materials, 2017, 5, 31-43.	1.1	9
68	Manipulation of cell adhesion and dynamics using RGD functionalized polymers. Journal of Materials Chemistry B, 2017, 5, 6307-6316.	2.9	34
69	Correction: Manipulation of cell adhesion and dynamics using RGD functionalized polymers. Journal of Materials Chemistry B, 2017, 5, 6973-6973.	2.9	1
70	Lithography performance and environmental compatibility of PFOS-free photoacid generators. Green Materials, 2017, 5, 173-181.	1.1	2
71	MEMS analogous micro-patterning of thermotropic nematic liquid crystalline elastomer films using a fluorinated photoresist and a hard mask process. Journal of Materials Chemistry C, 2017, 5, 12635-12644.	2.7	16
72	Extreme ultraviolet resist materials for sub-7 nm patterning. Chemical Society Reviews, 2017, 46, 4855-4866.	18.7	185

#	Article	IF	Citations
73	Individually detachable polymer-silicon micro-parts for vaporizable electronics., 2017,,.		3
74	Recent Progress in EUV Metal Oxide Photoresists. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 93-97.	0.1	6
75	Elucidating the patterning mechanism of zirconium-based hybrid photoresists. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2017, 16, 1.	1.0	22
76	Source-based nomenclature for single-strand homopolymers and copolymers (IUPAC) Tj ETQq0 0 0 rgBT /Overlo	ck 10 Tf 5	0 622 Td (Re
77	The development of fluorous photolithographic materials and their applications to achieve flexible organic electronic devices. Flexible and Printed Electronics, 2016, 1, 023001.	1.5	15
78	Ambiguous antiâ€fouling surfaces: Facile synthesis by lightâ€mediated radical polymerization. Journal of Polymer Science Part A, 2016, 54, 253-262.	2.5	51
79	Positive Tone Nanoparticle Photoresists: New Insight on the Patterning Mechanism. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 509-512.	0.1	7
80	Precise Synthesis of Fluorine-containing Block Copolymers via RAFT. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 705-708.	0.1	6
81	Micrometer-Scale Ordering of Silicon-Containing Block Copolymer Thin Films via High-Temperature Thermal Treatments. ACS Applied Materials & Interfaces, 2016, 8, 9897-9908.	4.0	19
82	Recent progress in nanoparticle photoresists development for EUV lithography. , 2016, , .		9
83	Positive tone oxide nanoparticle EUV (ONE) photoresists. , 2016, , .		4
84	Transient materials from thermally-sensitive polycarbonates and polycarbonate nanocomposites. Polymer, 2016, 101, 59-66.	1.8	19
85	Nanopatterning of Stable Radical Containing Block Copolymers for Highly Ordered Functional Nanomeshes. Macromolecules, 2016, 49, 5884-5892.	2.2	12
86	Kinetics of Block Copolymer Phase Segregation during Sub-millisecond Transient Thermal Annealing. Macromolecules, 2016, 49, 6462-6470.	2.2	23
87	Effects of surface-active block copolymers with oxyethylene and fluoroalkyl side chains on the antifouling performance of silicone-based films. Biofouling, 2016, 32, 81-93.	0.8	43
88	Interface manipulated two-phase nanostructure in a triblock terpolymer with a short middle segment. Polymer Journal, 2016, 48, 533-538.	1.3	3
89	Transient micropackets for silicon dioxide and polymer-based vaporizable electronics., 2016,,.		6
90	Solubility studies of inorganic–organic hybrid nanoparticle photoresists with different surface functional groups. Nanoscale, 2016, 8, 1338-1343.	2.8	51

#	Article	IF	CITATIONS
91	Nomenklatura (imenovanje) i grafiÄko prikazivanje kemijski modificiranih polimera (IUPAC-ove preporuke) Tj ETQo	$1_{0.2}^{1}$ 0.784	3]4 rgBT
92	Block copolymers with stable radical and fluorinated groups by ATRP. MRS Communications, 2015, 5, 441-446.	0.8	6
93	Laser Spike Annealing of DSA Photoresists. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 631-634.	0.1	10
94	Oxide Nanoparticle EUV (ONE) Photoresists: Current Understanding of the Unusual Patterning Mechanism. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 515-518.	0.1	21
95	Vertical Oriented Lamellar Formation of Fluorine- and Silicon-containing Block Copolymers without Neutral Layers. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 649-652.	0.1	13
96	Amphiphilic oligopeptides grafted to PDMSâ€based diblock copolymers for use in antifouling and fouling release coatings. Polymers for Advanced Technologies, 2015, 26, 829-836.	1.6	30
97	Multi-modal graphene polymer interface characterization platform for vaporizable electronics. , 2015,		3
98	Alkali Metal Based Micro Combustion Using Graphene Micro-valve Trigger. Journal of Physics: Conference Series, 2015, 660, 012033.	0.3	2
99	Nomenclature and graphic representations for chemically modified polymers (IUPAC) Tj ETQq 110.784314 rgBT /	Oyerlock 1	.04Tf 50 42
100	Zinc induced polyelectrolyte coacervate bioadhesive and its transition to a self-healing hydrogel. RSC Advances, 2015, 5, 66871-66878.	1.7	78
101	Studying the Mechanism of Hybrid Nanoparticle Photoresists: Effect of Particle Size on Photopatterning. Chemistry of Materials, 2015, 27, 5027-5031.	3.2	73
102	Systematic study of ligand structures of metal oxide EUV nanoparticle photoresists. , 2015, , .		1
103	Studying the mechanism of hybrid nanoparticle EUV photoresists. Proceedings of SPIE, 2015, , .	0.8	O
104	New developments in ligand-stabilized metal oxide nanoparticle photoresists for EUV lithography. Proceedings of SPIE, 2015, , .	0.8	3
105	Design, Synthesis, and Use of Y-Shaped ATRP/NMP Surface Tethered Initiator. ACS Macro Letters, 2015, 4, 606-610.	2.3	17
106	Widely Tunable Morphologies in Block Copolymer Thin Films Through Solvent Vapor Annealing Using Mixtures of Selective Solvents. Advanced Functional Materials, 2015, 25, 3057-3065.	7.8	86
107	Photopatterning of Indomethacin Thin Films: a Solvent-Free Vapor-Deposited Photoresist. ACS Applied Materials & Solvent-Free Vapor-Deposited Photoresist. ACS Applied Photoresist. ACS Appli	4.0	2
108	Block Copolymers as Antifouling and Fouling Resistant Coatings. , 2015, , 881-924.		1

#	Article	IF	CITATIONS
109	Understanding of PS- <i>b</i> -PMMA phase segregation under laser-induced millisecond thermal annealing. Proceedings of SPIE, 2015, , .	0.8	4
110	Control of polystyrene- <i>block</i> poly(methyl methacrylate) directed self-assembly by laser-induced millisecond thermal annealing. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2015, 14, 031205.	1.0	10
111	Supercritical CO2-philic nanoparticles suitable for determining the viability of carbon sequestration in shale. Environmental Science: Nano, 2015, 2, 288-296.	2.2	4
112	A glucose sensor via stable immobilization of the GOx enzyme on an organic transistor using a polymer brush. Journal of Polymer Science Part A, 2015, 53, 372-377.	2.5	58
113	Increasing sensitivity of oxide nanoparticle photoresists. , 2014, , .		13
114	Control of PS-b-PMMA directed self-assembly registration by laser induced millisecond thermal annealing. Proceedings of SPIE, 2014, , .	0.8	11
115	Nanopatterning with tailored molecules. , 2014, , .		3
116	Amphiphilic triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings. Biofouling, 2014, 30, 589-604.	0.8	69
117	Thermally induced orientational flipping of cylindrical phase diblock copolymers. Journal of Materials Chemistry C, 2014, 2, 2175-2182.	2.7	20
118	Controlled roughness reduction of patterned resist polymers using laser-induced sub-millisecond heating. Journal of Materials Chemistry C, 2014, 2, 9115-9121.	2.7	5
119	Phase behaviour of PMMA-b-PHEMA with solvents methanol and THF: modelling and comparison to the experiment. Soft Matter, 2014, 10, 6172-6181.	1.2	6
120	Generalized Platform for Antibody Detection using the Antibody Catalyzed Water Oxidation Pathway. Journal of the American Chemical Society, 2014, 136, 1879-1883.	6.6	30
121	C60-containing polymers for electron beam lithography. Polymer Bulletin, 2014, 71, 2395-2405.	1.7	7
122	Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes. Journal of Materials Chemistry B, 2014, 2, 1724.	2.9	164
123	Laser-Induced Sub-millisecond Heating Reveals Distinct Tertiary Ester Cleavage Reaction Pathways in a Photolithographic Resist Polymer. ACS Nano, 2014, 8, 5746-5756.	7.3	23
124	Metal Oxide Nanoparticle Photoresists for EUV Patterning. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2014, 27, 663-666.	0.1	46
125	Line width roughness reduction by rational design of photoacid generator for sub-millisecond laser post-exposure bake. , 2014, , .		2
126	The solvent problem: Redissolution of macromolecules in solution-processed organic electronics. Macromolecular Research, 2013, 21, 248-256.	1.0	20

#	Article	IF	CITATIONS
127	Biodegradability, Cytotoxicity, and Physicochemical Treatability of Two Novel Perfluorooctane Sulfonate-Free Photoacid Generators. Archives of Environmental Contamination and Toxicology, 2013, 64, 187-197.	2.1	8
128	Inkjet printing of fluorinated materials and their application to patterning organic semiconductors. Journal of Materials Chemistry C, 2013, 1, 5647.	2.7	9
129	Responsive and patterned polymer brushes. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1457-1472.	2.4	55
130	A brief guide to polymer nomenclature from IUPAC. Colloid and Polymer Science, 2013, 291, 457-458.	1.0	2
131	A Brief Guide to Polymer Nomenclature. Polymer Degradation and Stability, 2013, 98, 1-2.	2.7	6
132	Early detection of Candida albicans biofilms at porous electrodes. Analytical Biochemistry, 2013, 433, 192-201.	1.1	15
133	Fibronectin conformation regulates the proangiogenic capability of tumor-associated adipogenic stromal cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4314-4320.	1.1	35
134	ConfChem Conference on A Virtual Colloquium to Sustain and Celebrate IYC 2011 Initiatives in Global Chemical Education—The Continuing Celebration of IYC 2011: What the IUPAC Polymer Division Is Doing To Keep Things Going. Journal of Chemical Education, 2013, 90, 1559-1560.	1.1	1
135	Improved antifouling properties of polymer membranes using a †layer-by-layer' mediated method. Journal of Materials Chemistry B, 2013, 1, 5651.	2.9	35
136	From surface coatings to polymer nanofilms: lifting off polymer brushes. RSC Advances, 2013, 3, 18482.	1.7	5
137	A Brief Guide to Polymer Nomenclature. Polymer, 2013, 54, 3-4.	1.8	6
138	A Brief Guide to Polymer Nomenclature. Polymer International, 2013, 62, I-II.	1.6	1
139	Photo-cleavable anti-fouling polymer brushes: A simple and versatile platform for multicomponent protein patterning. Polymer, 2013, 54, 1762-1767.	1.8	16
140	A brief guide to polymer nomenclature. Reactive and Functional Polymers, 2013, 73, iv-v.	2.0	1
141	Characterization of Polymer Brush Membranes via HF Etch Liftoff Technique. ACS Macro Letters, 2013, 2, 241-245.	2.3	19
142	Orthogonal Patterning of Multiple Biomolecules Using an Organic Fluorinated Resist and Imprint Lithography. Biomacromolecules, 2013, 14, 993-1002.	2.6	16
143	Semi-perfluoroalkyl polyfluorene with varying fluorine content: synthesis and photophysical properties. Polymer Chemistry, 2013, 4, 5291.	1.9	8
144	Biomimetic Polymer Brushes Containing Tethered Acetylcholine Analogs for Protein and Hippocampal Neuronal Cell Patterning. Biomacromolecules, 2013, 14, 529-537.	2.6	45

#	Article	IF	Citations
145	Oxide nanoparticle EUV resists: toward understanding the mechanism of positive and negative tone patterning. Proceedings of SPIE, 2013 , , .	0.8	19
146	Line edge roughness of high deprotection activation energy photoresist by using sub-millisecond post exposure bake. , $2013, \ldots$		4
147	Non-aqueous negative-tone development of inorganic metal oxide nanoparticle photoresists for next generation lithography. Proceedings of SPIE, 2013, , .	0.8	7
148	Nanoparticle Photoresists: Ligand Exchange as a New, Sensitive EUV Patterning Mechanism. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 659-664.	0.1	40
149	Combinatorial Techniques to Efficiently Investigate and Optimize Organic Thin Film Processing and Properties. Molecules, 2013, 18, 4120-4139.	1.7	5
150	Synthesis and characterization of self-assembling block copolymers containing fluorine groups. Proceedings of SPIE, 2012, , .	0.8	0
151	Negative-tone development of photoresists in environmentally friendly silicone fluids. Proceedings of SPIE, 2012, , .	0.8	1
152	Tightly bound ligands for hafnium nanoparticle EUV resists. , 2012, , .		3
153	A brief guide to polymer nomenclature (IUPAC Technical Report). Pure and Applied Chemistry, 2012, 84, 2167-2169.	0.9	48
154	A new inorganic EUV resist with high-etch resistance. Proceedings of SPIE, 2012, , .	0.8	36
155	Synthesis and Characterization of High-Throughput Nanofabricated Poly(4-Hydroxy Styrene) Membranes for <i>In Vitro</i> Models of Barrier Tissue. Tissue Engineering - Part C: Methods, 2012, 18, 667-676.	1.1	11
156	Deprotection reaction kinetics in chemically amplified photoresists determined by sub-millisecond post exposure bake. Proceedings of SPIE, 2012, , .	0.8	1
157	Investigation of acid diffusion during laser spike annealing with systematically designed photoacid generators. Proceedings of SPIE, 2012, , .	0.8	5
158	Nanoparticle photoresists from HfO2 and ZrO2 for EUV patterning. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 583-586.	0.1	54
159	Top-down Meets Bottom up: Block Copolymers with Photoreactive Segments. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 17-20.	0.1	4
160	Polymer Brushes as Functional, Patterned Surfaces for Nanobiotechnology. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 53-56.	0.1	9
161	Terminology for aggregation and self-assembly in polymer science (IUPAC Recommendations 2013). Pure and Applied Chemistry, 2012, 85, 463-492.	0.9	21
162	Materials for biosurfaces. Journal of Materials Chemistry, 2012, 22, 19343.	6.7	6

#	Article	IF	Citations
163	Reconstruction of Surfaces from Mixed Hydrocarbon and PEG Components in Water: Responsive Surfaces Aid Fouling Release. Biomacromolecules, 2012, 13, 1864-1874.	2.6	39
164	Neutron Reflectivity Characterization of the Photoacid Reaction-Diffusion Latent and Developed Images of Molecular Resists for Extreme Ultraviolet Lithography. Langmuir, 2012, 28, 7665-7678.	1.6	13
165	Dual Mode Patterning of Fluorine-Containing Block Copolymers through Combined Top-down and Bottom-up Lithography. Chemistry of Materials, 2012, 24, 1454-1461.	3.2	40
166	Tailored Star Block Copolymer Architecture for High Performance Chemically Amplified Resists. Advanced Materials, 2012, 24, 5939-5944.	11.1	12
167	Preparation and Characterization of Amphiphilic Triblock Terpolymer-Based Nanofibers as Antifouling Biomaterials. Biomacromolecules, 2012, 13, 1606-1614.	2.6	26
168	Kinetic Rates of Thermal Transformations and Diffusion in Polymer Systems Measured during Sub-millisecond Laser-Induced Heating. ACS Nano, 2012, 6, 5830-5836.	7.3	31
169	Organic field-effect transistors and solar cells using novel high electron-affinity conjugated copolymers based on alkylbenzotriazole and benzothiadiazole. Journal of Materials Chemistry, 2012, 22, 4436.	6.7	29
170	Environmentally friendly patterning of thin films in linear methyl siloxanes. Journal of Materials Chemistry, 2012, 22, 5746.	6.7	12
171	Tailored star-shaped statistical teroligomers viaATRP for lithographic applications. Journal of Materials Chemistry, 2012, 22, 73-79.	6.7	12
172	Multicomponent Physical Vapor Deposited Films with Homogeneous Molecular Material Distribution Featuring Improved Resist Sensitivity. Advanced Functional Materials, 2012, 22, 3865-3873.	7.8	4
173	Electrical Control of Protein Conformation. Advanced Materials, 2012, 24, 2501-2505.	11.1	67
174	The role of hydrogels with tethered acetylcholine functionality on the adhesion and viability of hippocampal neurons and glial cells. Biomaterials, 2012, 33, 2473-2481.	5.7	30
175	Amphiphilic block copolymer surface composition: Effects of spin coating versus spray coating. Polymer, 2012, 53, 1321-1327.	1.8	14
176	Photo-switchable polyelectrolyte brush for dual protein patterning. Journal of Materials Chemistry, 2011, 21, 13789.	6.7	13
177	Properties of PVA/HfO ₂ Hybrid Electrospun Fibers and Calcined Inorganic HfO ₂ Fibers. Journal of Physical Chemistry C, 2011, 115, 5535-5544.	1.5	23
178	Robert W. Lenz. Macromolecules, 2011, 44, 1731-1731.	2.2	0
179	Triblock Copolymers with Grafted Fluorine-Free, Amphiphilic, Non-Ionic Side Chains for Antifouling and Fouling-Release Applications. Macromolecules, 2011, 44, 4783-4792.	2.2	94
180	Cellular Responses to Patterned Poly(acrylic acid) Brushes. Langmuir, 2011, 27, 7016-7023.	1.6	48

#	Article	IF	Citations
181	Fluorinated Amphiphilic Polymers and Their Blends for Fouling-Release Applications: The Benefits of a Triblock Copolymer Surface. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3366-3374.	4.0	103
182	New poly(dimethylsiloxane)/poly(perfluorooctylethyl acrylate) block copolymers: structure and order across multiple length scales in thin films. Journal of Materials Chemistry, 2011, 21, 15357.	6.7	33
183	A General Approach to Controlling the Surface Composition of Poly(ethylene oxide)-Based Block Copolymers for Antifouling Coatings. Langmuir, 2011, 27, 13762-13772.	1.6	106
184	High-Performance Electron-Transporting Polymers Derived from a Heteroaryl Bis(trifluoroborate). Journal of the American Chemical Society, 2011, 133, 9949-9951.	6.6	78
185	Characterization of the Non-uniform Reaction in Chemically Amplified Calix[4]resorcinarene Molecular Resist Thin Films. Australian Journal of Chemistry, 2011, 64, 1065.	0.5	4
186	Polymer brushes for electrochemical biosensors. Soft Matter, 2011, 7, 297-302.	1.2	68
187	Orthogonal processing: A new strategy for organic electronics. Chemical Science, 2011, 2, 1178.	3.7	109
188	Photoinduced Ordering of Block Copolymers. Nano Letters, 2011, 11, 1153-1160.	4.5	22
189	Time Dependent Behavior of Chemically Amplified Resist Characterized under Sub-millisecond Post Exposure Bake. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2011, 24, 487-490.	0.1	7
190	Studies of Environmentally Friendly Solvent-based Developers. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2011, 24, 239-240.	0.1	2
191	Fouling-resistant polymer brush coatings. Polymer, 2011, 52, 5419-5425.	1.8	61
192	Fluorine-free mixed amphiphilic polymers based on PDMS and PEG side chains for fouling release applications. Biofouling, 2011, 27, 589-602.	0.8	86
193	Synthesis, molecular, and morphological characterization of initial and modified diblock copolymers with organic acid chloride derivatives. Journal of Polymer Science Part A, 2011, 49, 4292-4305.	2.5	17
194	Orthogonal Processing and Patterning Enabled by Highly Fluorinated Lightâ€Emitting Polymers. Advanced Materials, 2011, 23, 735-739.	11.1	38
195	Detection of Transmitter Release from Single Living Cells Using Conducting Polymer Microelectrodes. Advanced Materials, 2011, 23, H184-8.	11.1	71
196	Combinatorial Optimization of a Molecular Glass Photoresist System for Electron Beam Lithography. Advanced Materials, 2011, 23, 5404-5408.	11.1	21
197	Probing electric field response of LC thermosets via time-resolved X-ray and dielectric spectroscopy. Polymer, 2011, 52, 2206-2213.	1.8	5
198	Solvent development processing of chemically amplified resists: chemistry, physics, and polymer science considerations. Proceedings of SPIE, 2011, , .	0.8	1

#	Article	IF	Citations
199	Environmentally friendly natural materials-based photoacid generators for next-generation photolithography. , $2011, \ldots$		1
200	LWR reduction and flow of chemically amplified resist patterns during sub-millisecond heating. Proceedings of SPIE, 2011, , .	0.8	11
201	Addressing challenges in lithography using sub-millisecond post exposure bake of chemically amplified resists. , $2011, \ldots$		4
202	Patterning conventional photoresists in environmentally friendly silicone fluids. Proceedings of SPIE, 2011, , .	0.8	0
203	Fabrication of polymer-based electronic circuits using photolithography. Applied Physics Letters, 2011, 99, .	1.5	22
204	Development of an inorganic nanoparticle photoresist for EUV, e-beam, and 193nm lithography. , 2011, , .		28
205	Environmentally friendly processing of photoresists in scCO 2 and decamethyltetrasiloxane., 2010,,.		1
206	Protein adsorption resistance of anti-biofouling block copolymers containing amphiphilic side chains. Soft Matter, 2010, 6, 3237.	1.2	77
207	Emerging applications of stimuli-responsive polymer materials. Nature Materials, 2010, 9, 101-113.	13.3	5,007
208	New self-assembly strategies for next generation lithography. Proceedings of SPIE, 2010, , .	0.8	1
209	Development of an inorganic photoresist for DUV, EUV, and electron beam imaging. Proceedings of SPIE, 2010, , .	0.8	31
210	All-dry processible and PAG-attached molecular glasses for improved lithographic performance. Proceedings of SPIE, 2010, , .	0.8	1
211	An Electrochemical Glucose Sensor from an Organically Modified Nanocomposite of Viologen and TiO2. Journal of Nanoscience and Nanotechnology, 2010, 10, 6869-6873.	0.9	6
212	Comparison of star and linear ArF resists. , 2010, , .		4
213	Sub-millisecond post exposure bake of chemically amplified resists by CO 2 laser heat treatment. Proceedings of SPIE, 2010, , .	0.8	9
214	Role of Solvent Dielectric Properties on Charge Transfer from PbS Nanocrystals to Molecules. Nano Letters, 2010, 10, 318-323.	4.5	79
215	Investing Early Signaling Events in IgE-FcÉ,RI Activation Using SEM. Biophysical Journal, 2010, 98, 274a.	0.2	0
216	Patterning of Polymer Brushes. A Direct Approach to Complex, Sub-Surface Structures. Nano Letters, 2010, 10, 3873-3879.	4.5	49

#	Article	IF	CITATIONS
217	Amphiphilic Surface Active Triblock Copolymers with Mixed Hydrophobic and Hydrophilic Side Chains for Tuned Marine Fouling-Release Properties. Langmuir, 2010, 26, 9772-9781.	1.6	97
218	Semiperfluoroalkyl Polyfluorenes for Orthogonal Processing in Fluorous Solvents. Macromolecules, 2010, 43, 1195-1198.	2.2	39
219	Surface Structures of an Amphiphilic Tri-Block Copolymer in Air and in Water Probed Using Sum Frequency Generation Vibrational Spectroscopy. Langmuir, 2010, 26, 11337-11343.	1.6	19
220	NEXAFS Depth Profiling of Surface Segregation in Block Copolymer Thin Films. Macromolecules, 2010, 43, 4733-4743.	2.2	45
221	Direct Patterning of Intrinsically Electron Beam Sensitive Polymer Brushes. ACS Nano, 2010, 4, 771-780.	7.3	69
222	Characterization of the Photoacid Diffusion Length and Reaction Kinetics in EUV Photoresists with IR Spectroscopy. Macromolecules, 2010, 43, 4275-4286.	2.2	46
223	Direct Synthesis of Quaternized Polymer Brushes and Their Application for Guiding Neuronal Growth. Biomacromolecules, 2010, 11, 2027-2032.	2.6	27
224	High refractive index and high transparency HfO2 nanocomposites for next generation lithography. Journal of Materials Chemistry, 2010, 20, 5186.	6.7	56
225	Reversible Morphology Control in Block Copolymer Films via Solvent Vapor Processing: An in Situ GISAXS Study. Macromolecules, 2010, 43, 4253-4260.	2.2	154
226	Orthogonal lithography for organic electronics. Proceedings of SPIE, 2010, , .	0.8	5
227	Architectural Effects on Acid Reaction-Diffusion Kinetics in Molecular Glass Photoresists. Chemistry of Materials, 2010, 22, 3093-3098.	3.2	19
228	Antimicrobial Behavior of Semifluorinated-Quaternized Triblock Copolymers against Airborne and Marine Microorganisms. ACS Applied Materials & Samp; Interfaces, 2010, 2, 703-711.	4.0	49
229	A Glucose Sensor Based on an Organic Electrochemical Transistor Structure Using a Vapor Polymerized Poly(3,4-ethylenedioxythiophene) Layer. Japanese Journal of Applied Physics, 2010, 49, 01AE10.	0.8	26
230	Synthesis and Processing of Organic Materials in Supercritical Carbon Dioxide. MRS Bulletin, 2009, 34, 108-115.	1.7	7
231	Molecular glass resists developable in supercritical carbon dioxide for 193 nm lithography., 2009,,.		2
232	Submillisecond post-exposure bake of chemically amplified resists by CO[sub 2] laser spike annealing. Journal of Vacuum Science & Technology B, 2009, 27, 3020.	1.3	5
233	High-index nanocomposite photoresist for 193-nm lithography. , 2009, , .		5
234	Orthogonal Patterning of PEDOT:PSS for Organic Electronics using Hydrofluoroether Solvents. Advanced Materials, 2009, 21, 2314-2317.	11.1	165

#	Article	IF	Citations
235	Fluorine―and siloxane ontaining polymers for supercritical carbon dioxide lithography. Polymer International, 2009, 58, 302-306.	1.6	12
236	Quantitative measurement of the polydispersity in the extent of functionalization of glassâ€forming calix[4]resorcinarenes. Rapid Communications in Mass Spectrometry, 2009, 23, 1957-1962.	0.7	3
237	Surface engineering of styrene/PEGylatedâ€fluoroalkyl styrene block copolymer thin films. Journal of Polymer Science Part A, 2009, 47, 267-284.	2.5	52
238	ABC Triblock Surface Active Block Copolymer with Grafted Ethoxylated Fluoroalkyl Amphiphilic Side Chains for Marine Antifouling/Fouling-Release Applications. Langmuir, 2009, 25, 12266-12274.	1.6	141
239	Selective Area Control of Self-Assembled Pattern Architecture Using a Lithographically Patternable Block Copolymer. ACS Nano, 2009, 3, 1761-1766.	7. 3	61
240	Development of a Directly Patterned Low-Surface-Energy Polymer Brush in Supercritical Carbon Dioxide. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2013-2020.	4.0	10
241	Direct Three-Dimensional Microfabrication of Hydrogels via Two-Photon Lithography in Aqueous Solution. Chemistry of Materials, 2009, 21, 2003-2006.	3.2	104
242	Sulfonium Salts of Alicyclic Group Functionalized Semifluorinated Alkyl Ether Sulfonates As Photoacid Generators. Chemistry of Materials, 2009, 21, 4037-4046.	3.2	12
243	Release of Nerve Growth Factor from HEMA Hydrogel-Coated Substrates and Its Effect on the Differentiation of Neural Cells. Biomacromolecules, 2009, 10, 174-183.	2.6	114
244	Preventing Nonspecific Adsorption on Polymer Brush Covered Gold Electrodes Using a Modified ATRP Initiator. Biomacromolecules, 2009, 10, 2750-2758.	2.6	39
245	Research in Macromolecular Science: Challenges and Opportunities for the Next Decade. Macromolecules, 2009, 42, 465-471.	2.2	145
246	Fluorinated Quaternary Ammonium Salts as Dissolution Aids for Polar Polymers in Environmentally Benign Supercritical Carbon Dioxide. Chemistry of Materials, 2009, 21, 3125-3135.	3.2	13
247	Solid state NMR investigation of photoresist molecular glasses including blend behavior with a photoacid generator. Journal of Materials Chemistry, 2009, 19, 2683.	6.7	14
248	Nanoscopic Rearrangement Of Outer And Inner Leaflet Membrane Proteins Due To Ige Receptor Cross-linking. Biophysical Journal, 2009, 96, 449a.	0.2	0
249	Cross-Linkable Molecular Glasses: Low Dielectric Constant Materials Patternable in Hydrofluoroethers. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2363-2370.	4.0	32
250	Acid-diffusion behaviour in organic thin films and its effect on patterning. Journal of Materials Chemistry, 2009, 19, 2986.	6.7	16
251	High voltage polymer solar cell patterned with photolithography. Journal of Materials Chemistry, 2009, 19, 5394.	6.7	15
252	Environmentally friendly patterning of molecular waterwheel (Noria) in supercritical carbon dioxide. Journal of Materials Chemistry, 2009, 19, 4622.	6.7	31

#	Article	IF	CITATIONS
253	Non-ionic photo-acid generators for applications in two-photon lithography. Journal of Materials Chemistry, 2009, 19, 505-513.	6.7	40
254	Dissociation Behavior of Weak Polyelectrolyte Brushes on a Planar Surface. Langmuir, 2009, 25, 4774-4779.	1.6	161
255	Orthogonal Processing: A Novel Photolithographic Patterning Method for Organic Electronics. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 565-569.	0.1	24
256	Quantitative measurement of the molecular-mass distribution in calix [4] resorcinarene molecular glass resists by mass spectrometry. , 2009, , .		0
257	Molecular glass resists for next-generation lithography. , 2009, , .		3
258	Contact analysis studies of an ESCAP resist with scCO 2 compatible additives. , 2009, , .		1
259	High refractive index nanoparticle fluids for 193-nm immersion lithography. , 2009, , .		4
260	An Efficient Route to Mesoporous Silica Films with Perpendicular Nanochannels. Advanced Materials, 2008, 20, 246-251.	11.1	49
261	Calix[4]resorcinarene Derivatives as Highâ€Resolution Resist Materials for Supercritical CO ₂ Processing. Advanced Materials, 2008, 20, 1303-1309.	11.1	18
262	Hydrofluoroethers as Orthogonal Solvents for the Chemical Processing of Organic Electronic Materials. Advanced Materials, 2008, 20, 3481-3484.	11.1	142
263	Molecular Glass Resists as Highâ€Resolution Patterning Materials. Advanced Materials, 2008, 20, 3355-3361.	11.1	82
264	Advances in polymers for anti-biofouling surfaces. Journal of Materials Chemistry, 2008, 18, 3405.	6.7	741
265	Settlement of <i>Ulva</i> Zoospores on Patterned Fluorinated and PEGylated Monolayer Surfaces. Langmuir, 2008, 24, 503-510.	1.6	121
266	Hydroxyphenylbenzene derivatives as glass forming molecules for high resolution photoresists. Journal of Materials Chemistry, 2008, 18, 1903.	6.7	26
267	Towards environmentally friendly, dry deposited, water developable molecular glass photoresists. Physical Chemistry Chemical Physics, 2008, 10, 1257-1262.	1.3	16
268	Dry photolithographic patterning process for organic electronic devices using supercritical carbon dioxide as a solvent. Journal of Materials Chemistry, 2008, 18, 3087.	6.7	42
269	A novel noria (water-wheel-like cyclic oligomer) derivative as a chemically amplified electron-beam resist material. Journal of Materials Chemistry, 2008, 18, 3588.	6.7	52
270	A Fundamental Study on Dissolution Behavior of High-Resolution Molecular Glass Photoresists. Chemistry of Materials, 2008, 20, 7292-7300.	3.2	26

#	Article	IF	Citations
271	Study of the Structureâ'Properties Relationship of Phenolic Molecular Glass Resists for Next Generation Photolithography. Chemistry of Materials, 2008, 20, 1606-1613.	3.2	48
272	Three-Dimensionally-Patterned Submicrometer-Scale Hydrogel/Air Networks That Offer a New Platform for Biomedical Applications. Nano Letters, 2008, 8, 1456-1460.	4.5	35
273	Simple Fabrication of Micropatterned Mesoporous Silica Films Using Photoacid Generators in Block Copolymers. Chemistry of Materials, 2008, 20, 604-606.	3.2	19
274	Nonplanar Surface Organization of Monodendrons in Side-Chain Modified Liquid Crystalline Block Copolymers Macromolecules, 2008, 41, 9940-9945.	2.2	3
275	Acid-Sensitive Semiperfluoroalkyl Resorcinarene: An Imaging Material for Organic Electronics. Journal of the American Chemical Society, 2008, 130, 11564-11565.	6.6	66
276	Acid-Labile, Chain-Scission Polymer Systems Used as Positive-Tone Photoresists Developable in Supercritical CO ₂ . Chemistry of Materials, 2008, 20, 2932-2936.	3.2	13
277	Control of Self-Assembly of Lithographically Patternable Block Copolymer Films. ACS Nano, 2008, 2, 1396-1402.	7.3	149
278	New architectures for high resolution patterning. , 2008, , .		3
279	Molecular glass resists for next generation lithography. Proceedings of SPIE, 2008, , .	0.8	6
280	Photolithographic Patterning in Supercritical Carbon Dioxide: Application to Patterned Light-emitting Devices. , 2008, , .		1
281	Polymer Science: Responding to a Changing World. Kobunshi, 2008, 57, 14-15.	0.0	0
282	Supercritical Carbon Dioxide Compatible Salts: Synthesis and Application to Next Generation Lithography. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 393-396.	0.1	3
283	The use of Nanocomposite Materials for High Refractive Index Immersion Lithography. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 621-629.	0.1	7
284	Achieving small dimensions with an environmentally friendly solvent: photoresist development using supercritical CO2., 2008,,.		1
285	The effect of EUV molecular glass architecture on the bulk dispersion of a photo-acid generator. , 2008, , .		2
286	Development of an operational high refractive index resist for 193nm immersion lithography. , 2008, , .		7
287	lonic photoacid generators containing functionalized semifluorinated sulfonates for high-resolution lithography. , 2008, , .		0
288	A comparison of the reaction-diffusion kinetics between model-EUV polymer and molecular-glass photoresists. Proceedings of SPIE, 2008, , .	0.8	9

#	Article	IF	Citations
289	Characterization of the latent image to developed image in model EUV photoresists. Proceedings of SPIE, 2008, , .	0.8	2
290	Development and evaluation of 193nm immersion generation-three fluid candidates. , 2008, , .		3
291	Phenolic molecular glasses as resists for next-generation lithography. , 2007, 6519, 1291.		24
292	Control of Morphology Orientation in Lithographically Patternable Diblock Copolymers. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 519-522.	0.1	4
293	Patterned Biofunctional Poly(acrylic acid) Brushes on Silicon Surfaces. Biomacromolecules, 2007, 8, 3082-3092.	2.6	140
294	Dissolution phenomena of phenolic molecular glass photoresist films in supercritical CO2. Journal of Materials Chemistry, 2007, 17, 4598.	6.7	23
295	Surface Induced Tilt Propagation in Thin Films of Semifluorinated Liquid Crystalline Side Chain Block Copolymers. Macromolecules, 2007, 40, 81-89.	2.2	43
296	Surface Organization, Light-Driven Surface Changes, and Stability of Semifluorinated Azobenzene Polymers. Langmuir, 2007, 23, 5110-5119.	1.6	55
297	Diazonaphthoquinone Molecular Glass Photoresists:Â Patterning without Chemical Amplification. Chemistry of Materials, 2007, 19, 3780-3786.	3.2	42
298	Arylonium Photoacid Generators Containing Environmentally Compatible Aryloxyperfluoroalkanesulfonate Groups. Chemistry of Materials, 2007, 19, 1434-1444.	3.2	35
299	Physical Vapor Deposition of Molecular Glass Photoresists: A New Route to Chemically Amplified Patterning. Advanced Functional Materials, 2007, 17, 2336-2342.	7.8	24
300	Creating Defined 3-D Defects Inside an Opaline Ormocer® Matrix with Two-Photon Lithography. Macromolecular Rapid Communications, 2007, 28, 922-926.	2.0	9
301	Insight in the role of bovine serum albumin for promoting the in situ surface growth of polyhydroxybutyrate (PHB) on patterned surfaces via enzymatic surface-initiated polymerization. Colloids and Surfaces B: Biointerfaces, 2007, 60, 68-79.	2.5	12
302	Surfaces of Fluorinated Pyridinium Block Copolymers with Enhanced Antibacterial Activity. Langmuir, 2006, 22, 11255-11266.	1.6	121
303	Sub-50 nm feature sizes using positive tone molecular glass resists for EUV lithography. Journal of Materials Chemistry, 2006, 16, 1470.	6.7	83
304	Molecular Glass Resists for High-Resolution Patterning. Chemistry of Materials, 2006, 18, 3404-3411.	3.2	104
305	3D defect engineering in polymer opals. , 2006, , .		3
306	Comparison of the Fouling Release Properties of Hydrophobic Fluorinated and Hydrophilic PEGylated Block Copolymer Surfaces: Attachment Strength of the DiatomNaviculaand the Green AlgaUlva. Biomacromolecules, 2006, 7, 1449-1462.	2.6	261

#	Article	IF	Citations
307	Functionalized Surface Arrays for Spatial Targeting of Immune Cell Signaling. Journal of the American Chemical Society, 2006, 128, 5594-5595.	6.6	49
308	Anti-Biofouling Properties of Comblike Block Copolymers with Amphiphilic Side Chains. Langmuir, 2006, 22, 5075-5086.	1.6	331
309	Supramolecular Microphase Separation in a Hydrogen-Bonded Liquid Crystalline Comb Copolymer in the Melt State. Macromolecules, 2006, 39, 3114-3117.	2.2	33
310	Adamantane based molecular glass resist for 193 nm lithography. , 2006, , .		7
311	Supercritical CO 2 for high resolution photoresist development. , 2006, , .		2
312	Molecular glass resists for EUV lithography. , 2006, , .		6
313	All-organic non-PFOS nonionic photoacid generating compounds with functionalized fluoroorganic sulfonate motif for chemically amplified resists. , 2006, , .		1
314	Defining the Biology-Materials Interface using both 2D and 3D Lithography. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2006, 19, 435-440.	0.1	3
315	New PFOS Free Photoresist Systems for EUV Lithography. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2006, 19, 515-520.	0.1	8
316	Recent progress in high resolution lithography. Polymers for Advanced Technologies, 2006, 17, 94-103.	1.6	222
317	Block copolymer patterns and templates. Materials Today, 2006, 9, 30-39.	8.3	222
318	Dinitrophenyl ligand substrates and their application to immunosensors. Biosensors and Bioelectronics, 2006, 22, 63-70.	5.3	15
319	Molecular glass photoresists for advanced lithography. Journal of Materials Chemistry, 2006, 16, 1693.	6.7	84
320	Positive- and Negative-Tone CVD Polyacrylic Electron-Beam Resists Developable by Supercritical CO2. Chemical Vapor Deposition, 2006, 12, 259-262.	1.4	18
321	Real-Time Analysis of Enzymatic Surface-Initiated Polymerization Using Surface Plasmon Resonance (SPR). Macromolecular Bioscience, 2006, 6, 145-152.	2.1	14
322	Control and Suppression of Surface Relief Gratings in Liquid-Crystalline Perfluoroalkyl–Azobenzene Polymers. Advanced Functional Materials, 2006, 16, 1577-1581.	7.8	52
323	High-Resolution Patterning of Molecular Glasses Using Supercritical Carbon Dioxide. Advanced Materials, 2006, 18, 442-446.	11.1	47
324	Molecular glass resists for next generation lithography. , 2006, 6153, 467.		17

#	Article	IF	CITATIONS
325	Absorbance measurement of polymers at extreme ultraviolet wavelength: Correlation between experimental and theoretical calculations. Journal of Vacuum Science & Technology B, 2006, 24, 1822.	1.3	35
326	The convergence of top-down and bottom-up nanofabrication: formation of 3D structures. , 2005, 5592, 12.		0
327	Inorganic polymer resists for EUVL. , 2005, 5753, 732.		6
328	Lithography Based on Molecular Glasses. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2005, 18, 431-434.	0.1	34
329	Silicon Containing Organic-Inorganic Hybrid Materials as EUV Photoresists. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2005, 18, 481-487.	0.1	8
330	Molecular Templates for Bio-specific Recognition by Low-Energy Electron Beam Lithography. Nanobiotechnology, 2005, 1, 023-034.	1.2	16
331	Functional Hydrogel Surfaces: Binding Kinesin-Based Molecular Motor Proteins to Selected Patterned Sites. Advanced Functional Materials, 2005, 15, 1303-1309.	7.8	27
332	Synthesis, Characterization and Lithography Performance of Photoacid Generator with Short Perfluoroalkyl Anion. Polymer Bulletin, 2005, 55, 333-340.	1.7	4
333	Materials for future lithography (Invited Paper). , 2005, 5753, 1.		18
334	Three-Dimensional Microfabrication by Two-Photon Lithography. MRS Bulletin, 2005, 30, 976-982.	1.7	52
335	Low Surface Energy Characteristics of Mesophase-Forming ABC and ACB Triblock Copolymers with Fluorinated B Blocks. Molecular Crystals and Liquid Crystals, 2005, 441, 211-226.	0.4	22
336	End-functionalization of poly(3-hydroxybutyrate)via genetic engineering for solid surface modification. Chemical Communications, 2005, , 1956.	2.2	4
337	Oligo(ethylene glycol) Containing Polymer Brushes as Bioselective Surfaces. Langmuir, 2005, 21, 2495-2504.	1.6	132
338	Self-Assembled Monolayers and Polymer Brushes in Biotechnology:Â Current Applications and Future Perspectives. Biomacromolecules, 2005, 6, 2427-2448.	2.6	661
339	Directing self-assembly in macromolecular systems: Hydrogen bonding in ordered polymers. Pure and Applied Chemistry, 2004, 76, 1337-1343.	0.9	13
340	Towards all-dry lithography: Electron-beam patternable poly(glycidyl methacrylate) thin films from hot filament chemical vapor deposition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 2473.	1.6	33
341	Patternable block copolymers with high transparency at 157 nm: Fluorocarbinol functionalized poly(isoprene-b-cyclohexane). Polymer Bulletin, 2004, 52, 321-328.	1.7	4
342	Managing polymer surface structure using surface active block copolymers in block copolymer mixtures. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 411-420.	2.4	19

#	Article	IF	Citations
343	Fluorinated polymers: liquid crystalline properties and applications in lithography. Chemical Record, 2004, 4, 315-330.	2.9	49
344	Orientational Switching of Mesogens and Microdomains in Hydrogen-Bonded Side-Chain Liquid-Crystalline Block Copolymers Using AC Electric Fields. Advanced Functional Materials, 2004, 14, 364-370.	7.8	60
345	Additive-Driven Phase-Selective Chemistry in Block Copolymer Thin Films: The Convergence of Top–Down and Bottom–Up Approaches. Advanced Materials, 2004, 16, 953-957.	11.1	97
346	Swelling and dissolution rate measurements of polymer thin films in supercritical carbon dioxide. Journal of Supercritical Fluids, 2004, 31, 323-328.	1.6	22
347	Controlled degradation of epoxy networks: analysis of crosslink density and glass transition temperature changes in thermally reworkable thermosets. Polymer, 2004, 45, 1939-1950.	1.8	106
348	Heat capacity measurements of two-dimensional self-assembled hexadecanethiol monolayers on polycrystalline gold. Applied Physics Letters, 2004, 84, 5198-5200.	1.5	38
349	Photoprocessable Polymer Opals. Chemistry of Materials, 2004, 16, 5286-5292.	3.2	28
350	Spatially Controlled Fabrication of Nanoporous Block Copolymers. Chemistry of Materials, 2004, 16, 3800-3808.	3.2	100
351	Tribute to Professor Helmut Ringsdorf. Macromolecules, 2004, 37, 8485-8486.	2.2	2
352	Alignment of Self-Assembled Hierarchical Microstructure in Liquid Crystalline Diblock Copolymers Using High Magnetic Fields. Macromolecules, 2004, 37, 9903-9908.	2.2	128
353	Control of Surface Properties Using Fluorinated Polymer Brushes Produced by Surface-Initiated Controlled Radical Polymerization. Langmuir, 2004, 20, 10498-10506.	1.6	83
354	Attogram detection using nanoelectromechanical oscillators. Journal of Applied Physics, 2004, 95, 3694-3703.	1.1	547
355	Two-Photon Three-Dimensional Microfabrication of Poly(Dimethylsiloxane) Elastomers. Chemistry of Materials, 2004, 16, 5556-5558.	3.2	102
356	Enzymatic Surface-Initiated Polymerization:Â A Novel Approach for the in Situ Solid-Phase Synthesis of Biocompatible Polymer Poly(3-hydroxybutyrate). Biomacromolecules, 2004, 5, 889-894.	2.6	37
357	Silicon backbone polymers as EUV resists. , 2004, , .		6
358	Structural organisations in polystyrene-based semifluorinated block copolymers for low surface energy coatings. Surface Coatings International Part B: Coatings Transactions, 2004, 87, 77-82.	0.3	4
359	Synthesis and Phase Behavior of Side-Group Liquid Crystalline Polymers in Nematic Solvents. Macromolecules, 2004, 37, 3569-3575.	2.2	9
360	Novel resists with nontraditional compositions for EUV lithography. , 2004, , .		9

#	Article	IF	CITATIONS
361	High-sensitivity material systems for two-photon three dimensional microfabrication. , 2004, , .		О
362	Hexafluoroisopropyl and trifluoromethyl carbinols in an acrylate platform for 157-nm chemically amplified resists., 2004, 5376, 554.		1
363	Preparation and Two-Photon Lithography of a Sulfur Containing Resin with High Refractive Index. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2004, 17, 115-118.	0.1	14
364	Chemically Amplified Positive Resists for Two-Photon Three-Dimensional Microfabrication. Advanced Materials, 2003, 15, 517-521.	11.1	76
365	An overview of supercritical CO2 applications in microelectronics processing. Microelectronic Engineering, 2003, 65, 145-152.	1.1	180
366	Design and application of high-sensitivity two-photon initiators for three-dimensional microfabrication. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 158, 163-170.	2.0	108
367	Deintercalation of a chemically switchable polymer from a layered silicate nanocomposite. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 3151-3159.	2.4	7
368	Rod-coil block copolymers: An iterative synthetic approach via living free-radical procedures. Journal of Polymer Science Part A, 2003, 41, 3640-3656.	2.5	46
369	Positive-Tone Photoresist Process for Supercritical Carbon Dioxide Development. Chemistry of Materials, 2003, 15, 4893-4895.	3.2	29
370	Methods for the Topographical Patterning and Patterned Surface Modification of Hydrogels Based on Hydroxyethyl Methacrylate. Biomacromolecules, 2003, 4, 1126-1131.	2.6	70
371	Structural Studies of Extension-Induced Mesophase Formation in Poly(diethylsiloxane) Elastomers:Â In Situ Synchrotron WAXS and SAXS. Macromolecules, 2003, 36, 1975-1981.	2.2	31
372	Liquid Crystalline Rodâ^'Coil Block Copolymers by Stable Free Radical Polymerization:Â Synthesis, Morphology, and Rheology. Macromolecules, 2003, 36, 3357-3364.	2.2	74
373	Coatings Based on Side-chain Ether-linked Poly(ethylene glycol) and Fluorocarbon Polymers for the Control of Marine Biofouling. Biofouling, 2003, 19, 91-98.	0.8	126
374	Fluoropolymer resists for 157 nm lithography. , 2003, 5039, 539.		3
375	Novel silicon-containing polymers as photoresist materials for EUV lithography. , 2003, , .		9
376	Evaluation of fluorinated dissolution inhibitors for 157-nm lithography., 2003,,.		0
377	Malolactonate polymers and copolymers for biomedical applications. Macromolecular Symposia, 2003, 197, 303-314.	0.4	4
378	Surface patterning and biological evaluation of semi-interpenetrated poly(HEMA)/poly(alkyl \hat{l}^2 -malolactonate)s. Macromolecular Symposia, 2003, 197, 369-380.	0.4	8

#	Article	IF	Citations
379	Strategies for High Transparency Acrylate Resists for 157 nm Lithography. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2003, 16, 573-580.	0.1	4
380	Lithographic Patterning with Block Copolymers. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2003, 16, 347-350.	0.1	10
381	Synthesis and evaluation of novel organoelement resists for EUV lithography. , 2003, , .		8
382	Dissolution rate measurements for resist processing in supercritical carbon dioxide., 2002, 4690, 425.		2
383	New Strategies for High Resolution Photoresists Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2002, 15, 603-611.	0.1	29
384	Organoelement resists for EUV lithography. , 2002, , .		4
385	<title>New liquid crystal materials enabling revolutionary display devices</title> ., 2002,,.		0
386	Fluorinated dissolution inhibitors for 157-nm lithography., 2002, 4690, 477.		2
387	High-sensitivity two-photon photoacid generator for three-dimensional microfabrication. , 2002, 4809, 170.		1
388	Microfabrication of hydrogels for biomedical applications. , 2002, , .		2
389	Highly transparent resist platforms for 157-nm microlithography: an update. , 2002, , .		17
390	Application of blends and side chain Si-O copolymers as high-etch-resistant sub-100-nm e-beam resists. , 2002, , .		0
391	Semifluorinated Aromatic Side-Group Polystyrene-Based Block Copolymers:Â Bulk Structure and Surface Orientation Studies. Macromolecules, 2002, 35, 8078-8087.	2.2	111
392	Tailoring Transparency of Imageable Fluoropolymers at 157 nm by Incorporation of Hexafluoroisopropyl Alcohol to Photoresist Backbones. Chemistry of Materials, 2002, 14, 1306-1313.	3.2	31
393	An Efficient Two-Photon-Generated Photoacid Applied to Positive-Tone 3D Microfabrication. Science, 2002, 296, 1106-1109.	6.0	709
394	SELF-ASSEMBLY: Enhanced: Persistence Pays Off. Science, 2002, 296, 859-861.	6.0	14
395	Engineering low surface energy polymers through molecular design: synthetic routes to fluorinated polystyrene-based block copolymers. Journal of Materials Chemistry, 2002, 12, 1684-1692.	6.7	74
396	Fluorinated mesogen-jacketed liquid-crystalline polymers as surface-modifying agents: Design, synthesis and characterization. Macromolecular Chemistry and Physics, 2002, 203, 1573-1583.	1.1	62

#	Article	IF	CITATIONS
397	Characterization of thermally reworkable thermosets: materials for environmentally friendly processing and reuse. Polymer, 2002, 43, 131-139.	1.8	131
398	Study of the interlayer expansion mechanism and thermal–mechanical properties of surface-initiated epoxy nanocomposites. Polymer, 2002, 43, 4895-4904.	1.8	188
399	Highly Reactive 2,5-Disubstituted Styrene-Based Monomer Polymerized via Stable Free Radical Polymerization: A Effect of Substitution and Liquid Crystallinity on Polymerization. Macromolecules, 2001, 34, 5120-5124.	2.2	37
400	Synthesis, Characterization, and Redox Reactivity of Novel Quinone-Containing Polymer. Chemistry of Materials, 2001, 13, 2928-2932.	3.2	35
401	Periodic Surface Topology of Three-Arm Semifluorinated Alkane Monodendron Diblock Copolymers. Langmuir, 2001, 17, 4342-4346.	1.6	27
402	Lithographic Applications of Redox Probe Microscopy. Langmuir, 2001, 17, 5932-5938.	1.6	23
403	Rejuvenation of 248nm Resist Backbones for 157nm Lithography Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2001, 14, 613-620.	0.1	19
404	Development of a bond contribution model for structure: property correlations in dry etch studies. , 2001, 4345, 945.		4
405	Fluorinated 2-Vinylcyclopropane Copolymers as Low Surface Energy Materials. Macromolecular Symposia, 2001, 169, 303-312.	0.4	4
406	E-Beam Patterning of Hot-Filament CVD Fluorocarbon Films Using Supercritical CO2 as a Developer. Chemical Vapor Deposition, 2001, 7, 195.	1.4	22
407	Patterning of Polymeric Hydrogels for Biomedical Applications. Macromolecular Rapid Communications, 2001, 22, 1284.	2.0	36
408	Defect-mediated creep of structured materials. Europhysics Letters, 2001, 54, 269-274.	0.7	21
409	High-pressure cell for simultaneous small-angle x-ray scattering and laser light scattering measurements. Review of Scientific Instruments, 2001, 72, 2679-2685.	0.6	15
410	Fundamental Studies of Fluoropolymer Photoresists for 157 nm Lithography Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2000, 13, 451-458.	0.1	17
411	Design strategies for 157 -nm single-layer photoresists: lithographic evaluation of a poly($\hat{l}\pm$) Tj ETQq $1~1~0.78$	4314 rgBT /Ove	erlogk 10 Tf 5
412	Polyesters with semifluorinated side chains: A proposal for the solid-state structure. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 1617-1625.	2.4	12
413	A solvent-free method for the synthesis of block copolymers with fluorinated pendant groups by a hydrosilylation reaction. Journal of Polymer Science Part A, 2000, 38, 1179-1183.	2.5	14
414	Photochromism of 4-cyanophenylazobenzene in liquid crystalline-coil AB diblock copolymers: the influence of microstructure. Macromolecular Rapid Communications, 2000, 21, 1309-1312.	2.0	34

#	Article	IF	CITATIONS
415	Switching surface polarity: synthesis and characterization of a fluorinated block copolymer with surface-activetert-butoxycarbonyl groups. Journal of Physical Organic Chemistry, 2000, 13, 787-795.	0.9	13
416	Understanding and controlling the morphology of styrene–isoprene side-group liquid crystalline diblock copolymers. Polymer, 2000, 41, 8897-8907.	1.8	70
417	Microdeformation of a polydomain, smectic liquid crystalline thermoset. Journal of Materials Science, 2000, 35, 2079-2086.	1.7	30
418	Synchrotron Radiation for Probing the Electric Field Alignment of LC Macromolecules and Polymers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2000, 45, 451-501.	1.8	3
419	Synchrotron x-ray study of the smectic layer directional instability. Physical Review E, 2000, 61, 1593-1598.	0.8	12
420	POLYMER SCIENCE:Shape Persistence of Synthetic Polymers. Science, 2000, 288, 448-449.	6.0	39
421	Temperature Dependence of Molecular Orientation on the Surfaces of Semifluorinated Polymer Thin Films. Langmuir, 2000, 16, 1993-1997.	1.6	83
422	Low-Surface-Energy Fluoromethacrylate Block Copolymers with Patternable Elements. Chemistry of Materials, 2000, 12, 33-40.	3.2	92
423	Selectively Thermally Cleavable Fluorinated Side Chain Block Copolymers:Â Surface Chemistry and Surface Properties. Macromolecules, 2000, 33, 1310-1320.	2.2	47
424	Effect of Changing Molecular End Groups on Surface Properties:Â Synthesis and Characterization of Poly(styrene-b-semifluorinated isoprene) Block Copolymers with â°CF2H End Groups. Macromolecules, 2000, 33, 8012-8019.	2.2	53
425	Molecular Orientation of Single and Two-Armed Monodendron Semifluorinated Chains on "Soft―and "Hard―Surfaces Studied Using NEXAFS. Macromolecules, 2000, 33, 6068-6077.	2.2	55
426	Surface Stability in Liquid-Crystalline Block Copolymers with Semifluorinated Monodendron Side Groups. Macromolecules, 2000, 33, 6106-6119.	2.2	110
427	Supercritical CO2Processing for Submicron Imaging of Fluoropolymers. Chemistry of Materials, 2000, 12, 41-48.	3.2	89
428	The Orientation of Semifluorinated Alkanes Attached to Polymers at the Surface of Polymer Films. Macromolecules, 2000, 33, 1882-1887.	2.2	115
429	Photochromism of 4-cyanophenylazobenzene in liquid crystalline-coil AB diblock copolymers: the influence of microstructure., 2000, 21, 1309.		1
430	Solid state crystalline and liquid crystalline structure of semifluorinated 1-bromoalkane compounds. Liquid Crystals, 1999, 26, 637-648.	0.9	39
431	Lithographic results of electron beam photoresists prepared by living free radical polymerization. Polymer Bulletin, 1999, 43, 93-100.	1.7	8
432	Effect of polymer architecture on self-diffusion of LC polymers. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 405-414.	2.4	1

#	Article	IF	CITATIONS
433	Liquid crystalline side chain-coil diblock copolymers by living free radical polymerization. Macromolecular Rapid Communications, 1999, 20, 622-627.	2.0	16
434	Mesogen-jacketed liquid crystalline polymers via stable free radical polymerization. Macromolecular Chemistry and Physics, 1999, 200, 2338-2344.	1.1	50
435	Development of reworkable underfills, materials, reliability and processing. IEEE Transactions on Components and Packaging Technologies, 1999, 22, 163-167.	1.4	15
436	Transverse Cylindrical Microdomain Orientation in an LC Diblock Copolymer under Oscillatory Shear. Macromolecules, 1999, 32, 7703-7706.	2.2	57
437	Block copolymers as additives: a route to enhanced resist performance. , 1999, , .		3
438	Diffusion and Distribution of Photoacid Generators in thin Polymer Films. Materials Research Society Symposia Proceedings, 1999, 584, 155.	0.1	0
439	Polymer-platform-dependent characteristics of 193-nm photoresists., 1999, 3678, 1096.		1
440	Diffusion and Distribution Studies of Photoacid Generators. Ion Beam Analysis in Lithograpy Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 1999, 12, 457-467.	0.1	21
441	Structure Development in Side Group Liquid Crystalline Diblock Copolymers. , 1999, , 9-28.		1
442	Controlled-Order Thermosets for Electronic Packaging. , 1999, , 283-287.		1
443	Synthesis and Characterization of Thermally Degradable Polymer Networks. Chemistry of Materials, 1998, 10, 3833-3838.	3.2	101
444	Synthesis and Surface Energy Measurement of Semi-Fluorinated, Low-Energy Surfacesâ€. Macromolecules, 1998, 31, 4272-4276.	2.2	35
445	Smectic networks obtained from twin LC epoxy monomers?mechanical deformation of the smectic networks. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 31-38.	2.4	23
446	Flow-induced structure in a thermotropic liquid crystalline polymer as studied by SANS. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 3017-3023.	2.4	9
447	Curvature driven relaxation of disclination loops in liquid crystals. Polymer, 1998, 39, 4497-4503.	1.8	9
448	Stress relaxation of a main-chain, smectic, polydomain liquid crystalline elastomer. Polymer, 1998, 39, 3713-3718.	1.8	88
449	Synthesis and mechanical properties of semi-flexible polymer networks. Polymer Gels and Networks, 1998, 6, 291-300.	0.6	3
450	Molecular Orientation and Dynamics in Ferroelectric Diblock Copolymers Monitored by FT-IR Spectroscopy. Macromolecules, 1998, 31, 9008-9012.	2.2	7

#	Article	IF	Citations
451	Deformation of a Polydomain, Liquid Crystalline Epoxy-Based Thermoset. Macromolecules, 1998, 31, 4074-4088.	2.2	167
452	Deformation of a Polydomain, Smectic Liquid Crystalline Elastomer. Macromolecules, 1998, 31, 8531-8539.	2.2	103
453	Microphase-Stabilized Ferroelectric Liquid Crystals (MSFLC):Â Bistable Switching of Ferroelectric Liquid Crystalâ°'Coil Diblock Copolymers. Chemistry of Materials, 1998, 10, 1538-1545.	3.2	52
454	Reworkable Epoxies:Â Thermosets with Thermally Cleavable Groups for Controlled Network Breakdown. Chemistry of Materials, 1998, 10, 1475-1482.	3.2	183
455	Copolymer approach to charge-dissipating electron-beam resists. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 3701.	1.6	4
456	Twin nematic phenylbenzoates in a.c. electric fields. Liquid Crystals, 1998, 25, 199-206.	0.9	2
457	Conducting electron-beam resists based on polyaniline. , 1998, 3331, 369.		1
458	Ferroelectric block copolymers. Macromolecular Symposia, 1997, 117, 175-179.	0.4	11
459	Order within order: Studies of semifluorinated block copolymers. Macromolecular Symposia, 1997, 118, 701-706.	0.4	2
460	Positive-tone conducting electron-beam resists. , 1997, , .		0
461	Mixtures of Liquid-Crystalline and Amorphous Dicyanates:Â Unusual Curing Behavior and Mechanical Properties. Chemistry of Materials, 1997, 9, 1588-1597.	3.2	4
462	Orientation of Liquid Crystalline Epoxides under ac Electric Fields. Macromolecules, 1997, 30, 4278-4287.	2.2	99
463	Self-Organizing Materials with Low Surface Energy:Â The Synthesis and Solid-State Properties of Semifluorinated Side-Chain Ionenes. Macromolecules, 1997, 30, 7560-7567.	2.2	105
464	Effect of the Monomer Ratio on the Strengthening of Polymer Phase Boundaries by Random Copolymers. Macromolecules, 1997, 30, 6727-6736.	2.2	32
465	Multiple length scale selfâ€organization in liquid crystalline block copolymers. Macromolecular Symposia, 1997, 117, 141-152.	0.4	10
466	Influence of a liquid crystalline block on the microdomain structure of block copolymers. Macromolecular Symposia, 1997, 117, 241-256.	0.4	35
467	Molecular Design, Synthesis, and Characterization of Liquid Crystalâ^'Coil Diblock Copolymers with Azobenzene Side Groups. Macromolecules, 1997, 30, 2556-2567.	2.2	225
468	Liquid Crystalline, Semifluorinated Side Group Block Copolymers with Stable Low Energy Surfaces:Â Synthesis, Liquid Crystalline Structure, and Critical Surface Tension. Macromolecules, 1997, 30, 1906-1914.	2.2	311

#	Article	IF	Citations
469	High Refractive Index Polymers for Optical Applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 573-586.	1.2	20
470	Amplification by optical composites. Optics Letters, 1997, 22, 1247.	1.7	73
471	Rigid rod and liquid crystalline thermosets. Progress in Polymer Science, 1997, 22, 975-1000.	11.8	110
472	Nanocomposite Materials for Optical Applications. Chemistry of Materials, 1997, 9, 1302-1317.	3.2	998
473	Competing Interactions and Levels of Ordering in Self-Organizing Polymeric Materials. Science, 1997, 277, 1225-1232.	6.0	701
474	Smectic rheology. Rheologica Acta, 1997, 36, 498-504.	1.1	54
475	Analysis of smectic structure formation in liquid crystalline thermosets. Polymer, 1997, 38, 5857-5867.	1.8	50
476	Polyelectrolyte-Surfactant Complexes in the Solid State: Facile building blocks for self-organizing materials. Advanced Materials, 1997, 9, 17-31.	11.1	254
477	Imaging polymers with supercritical carbon dioxide. Advanced Materials, 1997, 9, 1039-1043.	11.1	35
478	Block copolymers containing liquid crystalline segments. Acta Polymerica, 1997, 48, 405-422.	1.4	95
479	Liquid crystalline networks from 1,4-benzenedicarboxylic acid bis(4-cyanatomethylphenyl) ester. Macromolecular Chemistry and Physics, 1997, 198, 2957-2970.	1.1	10
480	Covalently Linked, Transparent Silica-Poly(imide) Hybrids. Polymers for Advanced Technologies, 1997, 8, 289-296.	1.6	31
481	Structural Characterization of Biphenyl Ester-Based LC Molecules:Â Peculiarities of Cyclic Siloxane-Based Materials. Macromolecules, 1996, 29, 8717-8725.	2.2	10
482	Molecular Association in Nematic Phases of Cyclic Liquid Crystal Oligomers. Macromolecules, 1996, 29, 8706-8716.	2.2	9
483	Group-Transfer Polymerization oftert-Butyl Methacrylate and [3-(Methacryloxy)propyl]pentamethyldisiloxane:Â Synthesis and Characterization of Homopolymers and Random and Block Copolymers. Chemistry of Materials, 1996, 8, 2272-2281.	3.2	8
484	Lithographic Properties of Poly(tert-butyl methacrylate)-Based Block and Random Copolymer Resists Designed for 193 nm Wavelength Exposure Tools. Chemistry of Materials, 1996, 8, 2282-2290.	3.2	30
485	Surface Segregation Studies of Fluorine-Containing Diblock Copolymersâ€. Macromolecules, 1996, 29, 1229-1234.	2.2	231
486	Formation of Transparent Silicaâ€"Polymer Hybrids Based on Siloxane-Containing Polyimides. ACS Symposium Series, 1996, , 392-402.	0.5	1

#	Article	IF	CITATIONS
487	Rotational Diffusion and Order Parameters of a Liquid Crystalline Polymer Studied by ESR:  Molecular Weight Dependence. The Journal of Physical Chemistry, 1996, 100, 15867-15872.	2.9	16
488	Orientation-On-Demand Thin Films: Curing of Liquid Crystalline Networks in ac Electric Fields. Science, 1996, 272, 252-255.	6.0	70
489	The Processing of LC Thermosets in Orienting External Fields. Materials Research Society Symposia Proceedings, 1996, 425, 149.	0.1	2
490	<title>Supercritical fluid processing: opportunities for new resist materials and processes</title> ., 1996,,.		3
491	Block and random copolymer resists designed for 193-nm lithography and environmentally friendly supercritical CO 2 development., 1996, 2724, 410.		3
492	Block Copolymers as Lithographic Materials Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 1996, 9, 1-11.	0.1	7
493	Self-Assembled Smectic Phases in Rod-Coil Block Copolymers. Science, 1996, 273, 343-346.	6.0	417
494	Synthesis and curing of novel LC twin epoxy monomers for liquid crystal thermosets. Journal of Polymer Science Part A, 1996, 34, 1291-1303.	2.5	75
495	The curing of dicyanate ester liquid crystalline thermosets. Angewandte Makromolekulare Chemie, 1996, 240, 59-66.	0.3	1
496	Translational Diffusion in Polydisperse Polymer Samples Studied by Dynamic Imaging of Diffusion ESR. The Journal of Physical Chemistry, 1996, 100, 15856-15866.	2.9	15
497	Molecular Dynamics of a Liquid Crystalline Polymer Studied by Two-Dimensional Fourier Transform and CW ESR. The Journal of Physical Chemistry, 1996, 100, 15873-15885.	2.9	35
498	Synthesis and curing of novel LC twin epoxy monomers for liquid crystal thermosets. , 1996, 34, 1291.		1
499	Silicon-Containing Block Copolymer Resist Materials. ACS Symposium Series, 1995, , 281-298.	0.5	9
500	Novel ceramic particle synthesis for optical applications: Dispersion polymerized preceramic polymers as size templates for fine ceramic powders. Advanced Materials, 1995, 7, 1009-1012.	11.1	30
501	Nematic-smectic biphase of a main-chain liquid crystalline polyether. Journal of Materials Science, 1995, 30, 2023-2028.	1.7	2
502	Thermotropic liquid crystalline polymers with low thermal transitions. II. Low melting thermotropic liquid crystalline homo- and co-polyesters. Journal of Polymer Science Part A, 1995, 33, 1913-1916.	2.5	5
503	Block copolymers with low surface energy segments: siloxane- and perfluoroalkane-modified blocks. Polymer, 1995, 36, 1321-1325.	1.8	56
504	Daiet al.Reply:. Physical Review Letters, 1995, 74, 2837-2837.	2.9	7

#	Article	IF	Citations
505	The effect of electric and magnetic fields on the melt organization of a nematic cyclic siloxane liquid crystal. Liquid Crystals, 1995, 18, 787-794.	0.9	13
506	Zigzag Morphology of a Poly(styrene-b-hexyl isocyanate) Rod-Coil Block Copolymer. Macromolecules, 1995, 28, 1688-1697.	2.2	208
507	Probing the electric field alignment of a thermotropic liquid crystalline polymer by synchrotron radiation. Liquid Crystals, 1994, 17, 179-190.	0.9	18
508	Reinforcement of Polymer Interfaces with Random Copolymers. Physical Review Letters, 1994, 73, 2472-2475.	2.9	154
509	Crystallization of Precursors to Forsterite and Chromium-Doped Forsterite. Journal of the American Ceramic Society, 1994, 77, 33-40.	1.9	11
510	Synthesis and Lithographic Characterization of Block Copolymer Resists Consisting of Both Poly(styrene) Blocks and Hydrosiloxane-Modified Poly(diene) Blocks. Chemistry of Materials, 1994, 6, 927-934.	3.2	30
511	Viscoelastic properties of a model mainâ€chain liquid crystalline polyether. Journal of Rheology, 1994, 38, 1623-1638.	1.3	48
512	An investigation of the smectic-isotropic transition in a side-chain liquid crystal polymer by synchrotron radiation x-ray diffraction. Journal of Polymer Science, Part B: Polymer Physics, 1993, 31, 773-777.	2.4	11
513	Liquid crystalline and rigid-rod networks. Progress in Polymer Science, 1993, 18, 899-945.	11.8	154
514	Linear viscoelasticity of side chain liquid crystal polymer. Liquid Crystals, 1993, 13, 233-245.	0.9	62
515	Conductivity and third-order nonlinear optical measurements of polymers with distyrylbenzene and diphenylbutadiene segments. Chemistry of Materials, 1993, 5, 217-221.	3.2	2
516	The temperature dependence of nematic liquid crystalline polymer melt diffusion. Liquid Crystals, 1993, 14, 1351-1358.	0.9	7
517	Development of Poly(Phenylene)-Based Materials for Thin Film Applications: Optical Waveguides and Low Dielectric Materials. Journal of Macromolecular Science - Pure and Applied Chemistry, 1993, 30, 877-897.	1.2	9
518	Diffusion and melt viscosity of a main-chain liquid crystalline polyether. Macromolecules, 1993, 26, 3764-3771.	2.2	26
519	<title>Hydrosiloxane-modified styrene-diene block copolymer resists</title> ., 1993,,.		0
520	Synthesis of Novel Fluorinated [sgrave]-Conjugated Silicon-Containing Polymers: Polysilynes and Polysilanes. Journal of Macromolecular Science - Pure and Applied Chemistry, 1992, 29, 787-800.	1.2	6
521	Rigid-rod thermosets based on $1,3,5$ -triazine-linked aromatic ester segments. Macromolecules, $1992,25,2947-2954$.	2.2	82
522	Liquid crystalline epoxy thermosets based on dihydroxymethylstilbene: Synthesis and		

#	Article	IF	CITATIONS
523	The mechanical and magnetic alignment of liquid crystalline epoxy thermosets. Journal of Polymer Science Part A, 1992, 30, 1845-1853.	2.5	98
524	New liquid crystal polyethers and polyesters based on diphenylbutadiene mesogens. Journal of Polymer Science Part A, 1992, 30, 2541-2547.	2.5	4
525	Acid-catalyzed photoaromatization of poly(cyclohexadiene-1,2-diol) derivatives into polyphenylene. Polymer Bulletin, 1992, 28, 33-40.	1.7	10
526	Poly(methacrylate) Precursors to Forsterite. Journal of the American Ceramic Society, 1992, 75, 1831-1838.	1.9	24
527	Dynamic x-ray diffraction studies of liquid-crystalline polyesters. Journal of Polymer Science, Part B: Polymer Physics, 1990, 28, 1047-1062.	2.4	10
528	New thermotropic polyesters from distyrylbenzene bisphenols. Journal of Polymer Science, Part C: Polymer Letters, 1990, 28, 331-339.	0.7	8
529	Liquid crystal copolyethers with mixed mesogenic units and flexible spacers. Polymer Bulletin, 1990, 23, 535-542.	1.7	6
530	Dispersion copolymerization in nonâ€aqueous media. Makromolekulare Chemie Macromolecular Symposia, 1990, 35-36, 87-104.	0.6	38
531	Studies of liquid-crystalline polymer phase transitions using synchrotron x-radiation. Macromolecules, 1989, 22, 498-500.	2.2	8
532	Polymer tacticity in simulated NMR spectra. Journal of Chemical Education, 1989, 66, 645.	1.1	6
533	Liquid crystalline polyesters by staged-addition polycondensation. Polymer Bulletin, 1988, 20, 45.	1.7	7
534	Synthesis and characterization of pyrene-labeled hydroxypropyl cellulose and its fluorescence in solution. Macromolecules, 1987, 20, 38-44.	2.2	72
535	Formation of large monodisperse copolymer particles by dispersion polymerization. Macromolecules, 1987, 20, 268-273.	2.2	188
536	The effect of temperature and initiator levels on the dispersion polymerization of polystyrene. Journal of Polymer Science Part A, 1987, 25, 1395-1407.	2.5	125
537	Coloured particles by dispersion polymerization. European Polymer Journal, 1987, 23, 617-622.	2.6	20
538	Partitioning of monomer during dispersion polymerisation. Colloids and Surfaces, 1986, 21, 347-354.	0.9	18
539	Thermotropic liquid crystalline polyesters containing naphthalenic mesogenic groups. Polymer Bulletin, 1986, 15, 233.	1.7	20
540	Monodispersed, micron-sized polystyrene particles by dispersion polymerization. Journal of Polymer Science, Polymer Letters Edition, 1985, 23, 103-108.	0.4	202

#	Article	lF	CITATIONS
541	Particle size control in dispersion polymerization of polystyrene. Canadian Journal of Chemistry, 1985, 63, 209-216.	0.6	329
542	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1983, 4, 49-55.	1.1	47
543	Liquid-crystalline polymers. 12. Polyesters with either alternating or random orientation of mesogenic units. Macromolecules, 1983, 16, 1034-1036.	2.2	53
544	Liquid Crystal Polymers. V. Thermotropic Polyesters with Either Dyad or Triad Aromatic Ester Mesogenic Units and Flexible Polymethylene Spacers in the Main Chain. Polymer Journal, 1982, 14, 9-17.	1.3	138
545	Phase transitions in alkylene glycol terephthalate copolyesters containing mesogenic p-oxybenzoate units. Polymer Bulletin, 1981, 5-5, 497.	1.7	5
546	Thermotropic Liquid Crystalline Polyesters with Rigid or Flexible Spacer Groups. British Polymer Journal, 1980, 12, 132-146.	0.7	224
547	Patternable Block Copolymers. , 0, , 183-226.		122