Margaret T Fuller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4217464/publications.pdf

Version: 2024-02-01

94 papers

9,913 citations

46984 47 h-index 86 g-index

98 all docs 98 docs citations

times ranked

98

7574 citing authors

#	Article	IF	CITATIONS
1	Orientation of Asymmetric Stem Cell Division by the APC Tumor Suppressor and Centrosome. Science, 2003, 301, 1547-1550.	6.0	684
2	Stem Cell Self-Renewal Specified by JAK-STAT Activation in Response to a Support Cell Cue. Science, 2001, 294, 2542-2545.	6.0	651
3	Developmentally Regulated Mitochondrial Fusion Mediated by a Conserved, Novel, Predicted GTPase. Cell, 1997, 90, 121-129.	13.5	543
4	Asymmetric Inheritance of Mother Versus Daughter Centrosome in Stem Cell Division. Science, 2007, 315, 518-521.	6.0	498
5	Mitochondrial Fusion in Yeast Requires the Transmembrane GTPase Fzo1p. Journal of Cell Biology, 1998, 143, 359-373.	2.3	487
6	Male and Female Drosophila Germline Stem Cells: Two Versions of Immortality. Science, 2007, 316, 402-404.	6.0	420
7	Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. Journal of Cell Science, 2003, 116, 2763-2774.	1.2	369
8	Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature, 2000, 407, 750-754.	13.7	353
9	Centrosome misorientation reduces stem cell division during ageing. Nature, 2008, 456, 599-604.	13.7	315
10	Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science, 2022, 375, eabk2432.	6.0	295
11			
	Germline Stem Cells. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002642-a002642.	2.3	240
12	Germline Stem Cells. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002642-a002642. Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells. Journal of Cell Biology, 2008, 180, 739-746.	2.3	240
12	Moesin and its activating kinase Slik are required for cortical stability and microtubule organization		
	Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells. Journal of Cell Biology, 2008, 180, 739-746. Signaling in stem cell niches: lessons from the Drosophila germline. Journal of Cell Science, 2005, 118,	2.3	204
13	Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells. Journal of Cell Biology, 2008, 180, 739-746. Signaling in stem cell niches: lessons from the Drosophila germline. Journal of Cell Science, 2005, 118, 665-672. Genetic control of cell proliferation and differentiation in Drosophila spermatogenesis. Seminars in	2.3	204
13	Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells. Journal of Cell Biology, 2008, 180, 739-746. Signaling in stem cell niches: lessons from the Drosophila germline. Journal of Cell Science, 2005, 118, 665-672. Genetic control of cell proliferation and differentiation inDrosophilaspermatogenesis. Seminars in Cell and Developmental Biology, 1998, 9, 433-444. Developmental regulation of transcription by a tissue-specific TAF homolog. Genes and Development,	2.3 1.2 2.3	204 191 190
13 14 15	Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells. Journal of Cell Biology, 2008, 180, 739-746. Signaling in stem cell niches: lessons from the Drosophila germline. Journal of Cell Science, 2005, 118, 665-672. Genetic control of cell proliferation and differentiation inDrosophilaspermatogenesis. Seminars in Cell and Developmental Biology, 1998, 9, 433-444. Developmental regulation of transcription by a tissue-specific TAF homolog. Genes and Development, 2001, 15, 1021-1030. Testis-specific TAF homologs collaborate to control a tissue-specific transcription program.	2.3 1.2 2.3 2.7	204 191 190

#	Article	IF	CITATIONS
19	The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. ELife, $2017, 6, .$	2.8	167
20	A Misexpression Screen Reveals Effects of bag-of-marbles and $TGF\hat{l}^2$ Class Signaling on the Drosophila Male Germ-Line Stem Cell Lineage. Genetics, 2004, 167, 707-723.	1.2	164
21	Tissue-Specific TAFs Counteract Polycomb to Turn on Terminal Differentiation. Science, 2005, 310, 869-872.	6.0	152
22	A Drosophila model for xeroderma pigmentosum and Cockayne's syndrome: haywire encodes the fly homolog of ERCC3, a human excision repair gene. Cell, 1992, 71, 925-937.	13.5	143
23	E-Cadherin Is Required for Centrosome and Spindle Orientation in Drosophila Male Germline Stem Cells. PLoS ONE, 2010, 5, e12473.	1.1	122
24	Asymmetric centrosome behavior and the mechanisms of stem cell division. Journal of Cell Biology, 2008, 180, 261-266.	2.3	119
25	Antagonistic Roles of Rac and Rho in Organizing the Germ Cell Microenvironment. Current Biology, 2007, 17, 1253-1258.	1.8	118
26	The <i>Drosophila </i> homolog of the Exo84 exocyst subunit promotes apical epithelial identity. Journal of Cell Science, 2007, 120, 3099-3110.	1.2	109
27	Belle is a Drosophila DEAD-box protein required for viability and in the germ line. Developmental Biology, 2005, 277, 92-101.	0.9	108
28	TheDrosophila Cog5Homologue Is Required for Cytokinesis, Cell Elongation, and Assembly of Specialized Golgi Architecture during Spermatogenesis. Molecular Biology of the Cell, 2003, 14, 190-200.	0.9	107
29	Accumulation of a differentiation regulator specifies transit amplifying division number in an adult stem cell lineage. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22311-22316.	3.3	101
30	Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells. Development (Cambridge), 2002, 129, 4523-34.	1.2	100
31	The Class I PITP Giotto Is Required for Drosophila Cytokinesis. Current Biology, 2006, 16, 195-201.	1.8	97
32	Germ line stem cell differentiation in Drosophila requires gap junctions and proceeds via an intermediate state. Development (Cambridge), 2003, 130, 6625-6634.	1.2	95
33	Phosphorylation of histone H4 Ser1 regulates sporulation in yeast and is conserved in fly and mouse spermatogenesis. Genes and Development, 2006, 20, 2580-2592.	2.7	94
34	Genetic Dissection of Meiotic Cytokinesis in Drosophila Males. Molecular Biology of the Cell, 2004, 15, 2509-2522.	0.9	90
35	Regulation of tubulin gene expression during embryogenesis in drosophila melanogaster. Cell, 1982, 28, 33-40.	13.5	85
36	A Role for Very-Long-Chain Fatty Acids in Furrow Ingression during CytokinesisÂin Drosophila Spermatocytes. Current Biology, 2008, 18, 1426-1431.	1.8	82

#	Article	IF	Citations
37	Differential expression of the Drosophila mitofusin genes fuzzy onions (fzo) and dmfn. Mechanisms of Development, 2002, 116, 213-216.	1.7	74
38	Somatic cell lineage is required for differentiation and not maintenance of germline stem cells in <i>Drosophila</i> testes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18477-18481.	3.3	67
39	TRAPPII is required for cleavage furrow ingression and localization of Rab11 in dividing male meiotic cells of <i>Drosophila </i> . Journal of Cell Science, 2009, 122, 4526-4534.	1.2	66
40	Purification of the coat and scaffolding proteins from procapsids of bacteriophage P22. Virology, 1981, 112, 529-547.	1,1	65
41	Assembly in vitro of bacteriophage P22 procapsids from purified coat and scaffolding subunits. Journal of Molecular Biology, 1982, 156, 633-665.	2.0	65
42	Translational control of meiotic cell cycle progression and spermatid differentiation in male germ cells by a novel eIF4G homolog. Development (Cambridge), 2007, 134, 2863-2869.	1.2	62
43	A Self-Limiting Switch Based on Translational Control Regulates the Transition from Proliferation to Differentiation in an Adult Stem Cell Lineage. Cell Stem Cell, 2012, 11, 689-700.	5.2	61
44	Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma. Science Signaling, 2018, 11 , .	1.6	59
45	A Chromatin-associated Kinesin-related Protein Required for Normal Mitotic Chromosome Segregation in Drosophila. Journal of Cell Biology, 1997, 139, 1361-1371.	2.3	56
46	Regulation of transcription of meiotic cell cycle and terminal differentiation genes by the testis-specific Zn-finger protein matotopetli. Development (Cambridge), 2004, 131, 1691-1702.	1.2	54
47	Escargot Restricts Niche Cell to Stem Cell Conversion in the Drosophila Testis. Cell Reports, 2014, 7, 722-734.	2.9	51
48	The <i>Drosophila </i> SUN protein Spag4 cooperates with the coiled-coil protein Yuri Gagarin to maintain association of the basal body and spermatid nucleus. Journal of Cell Science, 2010, 123, 2763-2772.	1.2	49
49	Sequential changes at differentiation gene promoters as they become active in a stem cell lineage. Development (Cambridge), 2011, 138, 2441-2450.	1.2	49
50	GOLPH3 Is Essential for Contractile Ring Formation and Rab11 Localization to the Cleavage Site during Cytokinesis in Drosophila melanogaster. PLoS Genetics, 2014, 10, e1004305.	1.5	49
51	Interacting genes identify interacting proteins involved in microtubule function inDrosophila. Cytoskeleton, 1989, 14, 128-135.	4.4	47
52	Riding the polar winds: Chromosomes motor down East. Cell, 1995, 81, 5-8.	13.5	45
53	Structural studies of P22 phage, precursor particles, and proteins by laser Raman spectroscopy. Biochemistry, 1982, 21, 3866-3878.	1.2	42
54	Asymmetric Stem Cell Division and Function of the Niche in the Drosophila Male Germ Line. International Journal of Hematology, 2005, 82, 377-380.	0.7	42

#	Article	IF	Citations
55	The actin-binding protein profilin is required for germline stem cell maintenance and germ cell enclosure by somatic cyst cells. Development (Cambridge), 2014, 141, 73-82.	1.2	42
56	Phosphatidylinositol 4,5-bisphosphate Directs Spermatid Cell Polarity and Exocyst Localization in Drosophila. Molecular Biology of the Cell, 2010, 21, 1546-1555.	0.9	41
57	Exocyst-Dependent Membrane Addition Is Required for Anaphase Cell Elongation and Cytokinesis in Drosophila. PLoS Genetics, 2015, 11, e1005632.	1.5	36
58	Mutations in <i>Cog7</i> affect Golgi structure, meiotic cytokinesis and sperm development during <i>Drosophila</i> spermatogenesis. Journal of Cell Science, 2012, 125, 5441-52.	1.2	33
59	Force and counterforce in the mitotic spindle. Cell, 1992, 71, 547-550.	13.5	32
60	Testis-specific ATP synthase peripheral stalk subunits required for tissue-specific mitochondrial morphogenesis in Drosophila. BMC Cell Biology, 2017, 18, 16.	3.0	32
61	Three levels of regulation lead to protamine and Mst77F expression in Drosophila. Developmental Biology, 2013, 377, 33-45.	0.9	30
62	Cell type-specific translational repression of Cyclin B during meiosis in males. Development (Cambridge), 2015, 142, 3394-3402.	1.2	30
63	Blocking promiscuous activation at cryptic promoters directs cell type–specific gene expression. Science, 2017, 356, 717-721.	6.0	30
64	Genetic analysis of dPsa, the Drosophila orthologue of puromycin-sensitive aminopeptidase, suggests redundancy of aminopeptidases. Development Genes and Evolution, 2001, 211, 581-588.	0.4	29
65	The polyubiquitin gene <i>Ubi-p63E</i> is essential for male meiotic cell cycle progression and germ cell differentiation in <i>Drosophila</i> Development (Cambridge), 2013, 140, 3522-3531.	1.2	29
66	Role of Survivin in cytokinesis revealed by a separation-of-function allele. Molecular Biology of the Cell, 2011, 22, 3779-3790.	0.9	27
67	What <i>Drosophila</i> spermatocytes tell us about the mechanisms underlying cytokinesis. Cytoskeleton, 2012, 69, 869-881.	1.0	26
68	The receptor tyrosine phosphatase Lar regulates adhesion between Drosophila male germline stem cells and the niche. Development (Cambridge), 2012, 139, 1381-1390.	1.2	25
69	A Novel Human Polycomb Binding Site Acts As a Functional Polycomb Response Element in Drosophila. PLoS ONE, 2012, 7, e36365.	1.1	24
70	The transcriptional regulator lola is required for stem cell maintenance and germ cell differentiation in the Drosophila testis. Developmental Biology, 2013, 373, 310-321.	0.9	23
71	Developmental regulation of cell type-specific transcription by novel promoter-proximal sequence elements. Genes and Development, 2020, 34, 663-677.	2.7	23
72	Smurf-mediated differential proteolysis generates dynamic BMP signaling in germline stem cells during Drosophila testis development. Developmental Biology, 2013, 383, 106-120.	0.9	22

#	Article	IF	CITATIONS
73	Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage. PLoS Genetics, 2015, 11, e1005701.	1.5	22
74	Developmental Genetics of the Essential Drosophila Nucleoporin nup154: Allelic Differences Due to an Outward-Directed Promoter in the P-Element $3\hat{a} \in \mathbb{Z}$ End. Genetics, 1999, 153, 799-812.	1.2	22
75	Germ-line specific variants of components of the mitochondrial outer membrane import machinery inDrosophila. FEBS Letters, 2004, 572, 141-146.	1.3	18
76	The Histone Variant His2Av is Required for Adult Stem Cell Maintenance in the Drosophila Testis. PLoS Genetics, 2013, 9, e1003903.	1.5	18
77	Polycomb Group Genes Psc and Su(z)2 Maintain Somatic Stem Cell Identity and Activity in Drosophila. PLoS ONE, 2012, 7, e52892.	1.1	16
78	Molecular Characterization of Mutant Alleles of the DNA Repair/Basal Transcription Factor haywire/ERCC3 in Drosophila. Genetics, 1999, 152, 291-297.	1.2	16
79	Molecular Evolution of the Testis TAFs of Drosophila. Molecular Biology and Evolution, 2009, 26, 1103-1116.	3 . 5	15
80	The Dlg Module and Clathrin-Mediated Endocytosis Regulate EGFR Signaling and Cyst Cell-Germline Coordination in the Drosophila Testis. Stem Cell Reports, 2019, 12, 1024-1040.	2.3	15
81	Differentiation in Stem Cell Lineages and in Life. Current Topics in Developmental Biology, 2016, 116, 375-390.	1.0	8
82	Somatic support cells regulate germ cell survival through the Baz/aPKC/Par6 complex. Development (Cambridge), 2019, 146, .	1.2	8
83	DREF Genetically Counteracts Mi-2 and Caf1 to Regulate Adult Stem Cell Maintenance. PLoS Genetics, 2019, 15, e1008187.	1.5	7
84	The DUG gene of Drosophila melanogaster encodes a structural and functional homolog of the S. cerevisiae SUG1 predicted ATPase associated with the 26S proteasome. Gene, 1998, 206, 165-174.	1.0	6
85	Drosophila doublefault protein coordinates multiple events during male meiosis by controlling mRNA translation. Development (Cambridge), 2019, 146, .	1.2	4
86	Stem Cell Niches. , 2013, , 51-65.		1
87	Regulation of Meiosis and Spermatid Differentiation in Drosophila Primary Spermatocytes. , 2000, , $120\text{-}132$.		1
88	Stem Cell Niches. , 2004, , 59-72.		1
89	Identification of Protein-RNA Interactions in Mouse Testis Tissue Using fRIP. Bio-protocol, 2022, 12, e4286.	0.2	1
90	Stem Cell Niches. , 2009, , 61-72.		0

#	Article	IF	CITATIONS
91	Stem Cell Niches. , 2014, , 59-79.		O
92	Regulation of Stem Cell Self-renewal Versus Differentiation by a Support Cell Niche: Lessons from the Drosophila Male Germ Line., 2004, , 171-178.		0
93	The polyubiquitin gene <i>Ubi-p63E</i> is essential for male meiotic cell cycle progression and germ cell differentiation in <i>Drosophila</i> Journal of Cell Science, 2013, 126, e1-e1.	1.2	O
94	Cell type-specific translational repression of Cyclin B during meiosis in males. Journal of Cell Science, 2015, 128, e1.1-e1.1.	1.2	0