Karim Adil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4217289/publications.pdf

Version: 2024-02-01

76326 39675 10,437 94 40 94 citations h-index g-index papers 106 106 106 9425 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Facile modifications of HKUST-1 by V, Nb and Mn for low-temperature selective catalytic reduction of nitrogen oxides by NH3. Catalysis Today, 2022, 384-386, 25-32.	4.4	6
2	Perspectives in Adsorptive and Catalytic Mitigations of NO _{<i>x</i>} Using Metal–Organic Frameworks. Energy & Energy	5.1	13
3	Efficient Splitting of Trans-/Cis-Olefins Using an Anion-Pillared Ultramicroporous Metal–Organic Framework with Guest-Adaptive Pore Channels. Engineering, 2022, 11, 80-86.	6.7	13
4	Cation-deficient Ca-doping lanthanum tungstate Ca2.06La2.61â-¡0.33W2O12: Structure and transport property study. Journal of Solid State Chemistry, 2022, 313, 123310.	2.9	2
5	The chemistry of metal–organic frameworks with face-centered cubic topology. Coordination Chemistry Reviews, 2022, 468, 214644.	18.8	14
6	Operando Elucidation on the Working State of Immobilized Fluorinated Iron Porphyrin for Selective Aqueous Electroreduction of CO ₂ to CO. ACS Catalysis, 2021, 11, 6499-6509.	11.2	27
7	Investigation of Mn Promotion on HKUSTâ€1 Metalâ€Organic Frameworks for Lowâ€Temperature Selective Catalytic Reduction of NO with NH ₃ . ChemCatChem, 2021, 13, 4029-4037.	3.7	6
8	Advances on CO2 storage. Synthetic porous solids, mineralization and alternative solutions. Chemical Engineering Journal, 2021, 419, 129569.	12.7	43
9	Versatility vs stability. Are the assets of metal–organic frameworks deployable in aqueous acidic and basic media?. Coordination Chemistry Reviews, 2021, 443, 214020.	18.8	33
10	Differential guest location by host dynamics enhances propylene/propane separation in a metal-organic framework. Nature Communications, 2020, 11, 6099.	12.8	44
11	Diammonium tetraborate dihydrate as hydrolytic by-product of ammonia borane in aqueous alkaline conditions. International Journal of Hydrogen Energy, 2020, 45, 9927-9935.	7.1	10
12	Computationally Assisted Assessment of the Metalâ€Organic Framework/Polymer Compatibility in Composites Integrating a Rigid Polymer. Advanced Theory and Simulations, 2019, 2, 1900116.	2.8	5
13	Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nature Chemistry, 2019, 11, 622-628.	13.6	371
14	Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air. Nature Communications, 2019, 10, 1328.	12.8	292
15	A Tailor-Made Interpenetrated MOF with Exceptional Carbon-Capture Performance from Flue Gas. CheM, 2019, 5, 950-963.	11.7	118
16	Conformationâ€Controlled Molecular Sieving Effects for Membraneâ€Based Propylene/Propane Separation. Advanced Materials, 2019, 31, e1807513.	21.0	117
17	Enriching the Reticular Chemistry Repertoire with Minimal Edge-Transitive Related Nets: Access to Highly Coordinated Metal–Organic Frameworks Based on Double Six-Membered Rings as Net-Coded Building Units. Journal of the American Chemical Society, 2019, 141, 20480-20489.	13.7	42
18	Extremely Hydrophobic POPs to Access Highly Porous Storage Media and Capturing Agent for Organic Vapors. CheM, 2019, 5, 180-191.	11.7	42

#	Article	IF	CITATIONS
19	Hydrocarbon recovery using ultra-microporous fluorinated MOF platform with and without uncoordinated metal sites: I- structure properties relationships for C2H2/C2H4 and CO2/C2H2 separation. Chemical Engineering Journal, 2019, 359, 32-36.	12.7	77
20	Concurrent Sensing of CO ₂ and H ₂ O from Air Using Ultramicroporous Fluorinated Metal–Organic Frameworks: Effect of Transduction Mechanism on the Sensing Performance. ACS Applied Materials & Interfaces, 2019, 11, 1706-1712.	8.0	35
21	Room-temperature synthesis of a new stable (N ₂ H ₄)WO ₃ compound: a route for hydrazine trapping. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 127-133.	1.1	2
22	Advances in Shaping of Metal–Organic Frameworks for CO ₂ Capture: Understanding the Effect of Rubbery and Glassy Polymeric Binders. Industrial & Engineering Chemistry Research, 2018, 57, 16897-16902.	3.7	46
23	Enhanced Separation of Butane Isomers via Defect Control in a Fumarate/Zirconium-Based Metal Organic Framework. Langmuir, 2018, 34, 14546-14551.	3.5	43
24	Trianglamine-Based Supramolecular Organic Framework with Permanent Intrinsic Porosity and Tunable Selectivity. Journal of the American Chemical Society, 2018, 140, 14571-14575.	13.7	78
25	Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nature Energy, 2018, 3, 1059-1066.	39.5	214
26	Achieving Superprotonic Conduction with a 2D Fluorinated Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 13156-13160.	13.7	103
27	Enabling Fluorinated MOFâ€Based Membranes for Simultaneous Removal of H ₂ S and CO ₂ from Natural Gas. Angewandte Chemie - International Edition, 2018, 57, 14811-14816.	13.8	176
28	Enabling Fluorinated MOFâ€Based Membranes for Simultaneous Removal of H ₂ S and CO ₂ from Natural Gas. Angewandte Chemie, 2018, 130, 15027-15032.	2.0	17
29	Topology meets MOF chemistry for pore-aperture fine tuning: ftw -MOF platform for energy-efficient separations <i>via</i> adsorption kinetics or molecular sieving. Chemical Communications, 2018, 54, 6404-6407.	4.1	65
30	Upgrading gasoline to high octane numbers using a zeolite-like metal–organic framework molecular sieve with ⟨b⟩ana⟨/b⟩-topology. Chemical Communications, 2018, 54, 9414-9417.	4.1	23
31	Carbonization of covalent triazine-based frameworks <i>via</i> ionic liquid induction. Journal of Materials Chemistry A, 2018, 6, 15564-15568.	10.3	13
32	Enriching the Reticular Chemistry Repertoire: Merged Nets Approach for the Rational Design of Intricate Mixed-Linker Metal–Organic Framework Platforms. Journal of the American Chemical Society, 2018, 140, 8858-8867.	13.7	129
33	Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc -MOF platform for the operative removal of H ₂ S. Journal of Materials Chemistry A, 2017, 5, 3293-3303.	10.3	94
34	Applying the Power of Reticular Chemistry to Finding the Missing alb-MOF Platform Based on the (6,12)-Coordinated Edge-Transitive Net. Journal of the American Chemical Society, 2017, 139, 3265-3274.	13.7	104
35	Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science, 2017, 356, 731-735.	12.6	275
36	Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chemical Society Reviews, 2017, 46, 3402-3430.	38.1	1,033

3

#	Article	IF	Citations
37	CO ₂ Capture Using the SIFSIX-2-Cu-i Metalâ€"Organic Framework: A Computational Approach. Journal of Physical Chemistry C, 2017, 121, 27462-27472.	3.1	14
38	A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving. CheM, 2017, 3, 822-833.	11.7	83
39	Valuing Metal–Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents. Advanced Materials, 2017, 29, 1702953.	21.0	88
40	A Fine-Tuned Metal–Organic Framework for Autonomous Indoor Moisture Control. Journal of the American Chemical Society, 2017, 139, 10715-10722.	13.7	224
41	A metal-organic framework–based splitter for separating propylene from propane. Science, 2016, 353, 137-140.	12.6	892
42	A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO ₂ Removal and Air Capture Using Physisorption. Journal of the American Chemical Society, 2016, 138, 9301-9307.	13.7	366
43	Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF. Journal of the American Chemical Society, 2016, 138, 12767-12770.	13.7	101
44	Supramolecular Selfâ€Assembly of Histidineâ€Cappedâ€Dialkoxyâ€Anthracene: A Visibleâ€Lightâ€Triggered Plat for Facile siRNA Delivery. Chemistry - A European Journal, 2016, 22, 13789-13793.	form	12
45	[Ag ₆₇ (SPhMe ₂) ₃₂ (PPh ₃) ₈] ³⁺ : Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster. Journal of the American Chemical Society, 2016, 138, 14727-14732.	13.7	167
46	Crystal structure and ion conducting properties of La5NbMo2O16. Journal of Solid State Chemistry, 2016, 237, 411-416.	2.9	11
47	Reticular Synthesis of HKUST-like tbo-MOFs with Enhanced CH ₄ Storage. Journal of the American Chemical Society, 2016, 138, 1568-1574.	13.7	193
48	Ultraâ€Tuning of the Rareâ€Earth fcuâ€MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins. Angewandte Chemie - International Edition, 2015, 54, 14353-14358.	13.8	222
49	Investigation of the La2O3–Nb2O5–WO3 ternary phase diagram: Isolation and crystal structure determination of the original La3NbWO10 material. Journal of Solid State Chemistry, 2015, 229, 129-134.	2.9	3
50	A supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO ₂ capture and hydrocarbon separation. Journal of Materials Chemistry A, 2015, 3, 6276-6281.	10.3	105
51	A facile solvent-free synthesis route for the assembly of a highly CO ₂ selective and H ₂ S tolerant NiSIFSIX metal–organic framework. Chemical Communications, 2015, 51, 13595-13598.	4.1	134
52	Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected ftw -MOFs. Chemical Science, 2015, 6, 4095-4102.	7.4	127
53	Tunable Rare Earth fcu -MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. Journal of the American Chemical Society, 2015, 137, 5034-5040.	13.7	308
54	MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc -MOF for CH ₄ , O ₂ , and CO ₂ Storage. Journal of the American Chemical Society, 2015, 137, 13308-13318.	13.7	632

#	Article	IF	CITATIONS
55	Synthesis, Structural Characterization and Thermal Behavior of New Organic–Inorganic Sulfate. Journal of Cluster Science, 2015, 26, 1413-1424.	3.3	1
56	Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties. Chemical Society Reviews, 2015, 44, 228-249.	38.1	662
57	A supermolecular building approach for the design and construction of metal–organic frameworks. Chemical Society Reviews, 2014, 43, 6141-6172.	38.1	708
58	Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nature Communications, 2014, 5, 4228.	12.8	510
59	Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks. Nature Chemistry, 2014, 6, 673-680.	13.6	396
60	Investigation of the composition space diagram of the ZnF2–3,5-diamino-1,2,4-triazole–HF–H2O chemical system and structural characterization of a new fluorinated guanazolate MOF [Zn3F2]·(Am2TAZ)4. Journal of Fluorine Chemistry, 2013, 150, 104-108.	1.7	13
61	Infrared, polarized Raman and ab initio calculations of the vibrational spectra of [N(C3H7)4]2Cu2Cl6 crystals. Vibrational Spectroscopy, 2013, 64, 10-20.	2.2	36
62	Hydrothermal synthesis, ab-initio structure determination and NMR study of the first mixed Cu–Al fluorinated MOF. CrystEngComm, 2013, 15, 3430.	2.6	23
63	Structural Characterization and Infrared and Electrical Properties of the New Inorganic-Organic Hybrid Compound. Journal of Chemistry, 2013, 2013, 1-10.	1.9	5
64	Poly[bis(μ-purin-9-ido-κ2N7:N9)zinc]. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m449-m449.	0.2	0
65	Poly[(ν3-hydrogenphosphato)(4H-1,2,4-triazole-κN1)zinc]. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m1426-m1427.	0.2	0
66	SMARTER crystallography of the fluorinated inorganic–organic compound Zn3Al2F12·[HAmTAZ]6. Dalton Transactions, 2012, 41, 6232.	3.3	43
67	Tandem Payne/Meinwald versus Meinwald rearrangements on the \hat{l} ±-hydroxy- or \hat{l} ±-silyloxy-spiro epoxide skeleton. Organic and Biomolecular Chemistry, 2012, 10, 502-505.	2.8	15
68	Hydrothermal Synthesis and Characterization Properties of C7H12N2[H2PO4]2.1/2H2O. Phosphorus, Sulfur and Silicon and the Related Elements, 2012, 187, 1173-1182.	1.6	4
69	Structural flexibility and intrinsic dynamics in the M2(2,6-ndc)2(dabco) (M = Ni, Cu, Co, Zn) metal–organic frameworks. Journal of Materials Chemistry, 2012, 22, 10303.	6.7	139
70	Mixed metalll–metallV hybrid fluorides. Journal of Fluorine Chemistry, 2012, 134, 29-34.	1.7	10
71	A New Organic–Inorganic Hybrid Oxyfluorotitanate [H <i>gua</i>] ₂ ·(Ti ₅ O ₅ F ₁₂) as a Transparent UV Filter. Inorganic Chemistry, 2011, 50, 5671-5678.	4.0	13
72	ZnAlF5·[TAZ]: an Al fluorinated MOF of MIL-53(Al) topology with cationic $\{Zn(1,2,4 \text{ triazole})\}$ 2+ linkers. Journal of Materials Chemistry, 2011, 21, 3949.	6.7	32

#	Article	IF	Citations
73	Fluoroaluminates of purine and DNA bases, adenine, guanine: [Hpur]2·(AlF5), [Hade]3·(AlF6)·6.5H2O, [Hguan]3·(Al3F12). Solid State Sciences, 2011, 13, 151-157.	3.2	8
74	A new one-dimensional hybrid material lattice: AC conductivity and structural characterization of [C7H12N2][CdCl4]. lonics, 2011, 17, 145-155.	2.4	17
7 5	7,9-Bis(hydroxymethyl)-7H-purine-2,6,8(1H,3H,9H)trione. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1458-o1458.	0.2	3
76	Synthesis, spectroscopy, thermal behavior, and X-ray crystal structure of two lead(II) complexes with $4\hat{a}\in^2$ -(4-tolyl)-2,2 $\hat{a}\in^2$;6 $\hat{a}\in^2$,2 $\hat{a}\in^3$ -terpyridine (ttpy). Journal of Coordination Chemistry, 2011, 64, 4421-4433.	2.2	10
77	Novel Layered Hybrid Fluoroaluminate in the Composition Space Diagram of the Al(OH)3-HguaCl-HFaq-EtOH System. Inorganic Chemistry, 2010, 49, 2392-2397.	4.0	17
78	Structural chemistry of organically-templated metal fluorides. Dalton Transactions, 2010, 39, 5983.	3.3	58
79	Third structure determination by powder diffractometry round robin (SDPDRR-3). Powder Diffraction, 2009, 24, 254-262.	0.2	31
80	Crystal chemistry of three new monodimensional fluorometalates templated with ethylenediamine. Solid State Sciences, 2009, 11, 1582-1586.	3.2	11
81	Evidence of 13 hybrid fluoroaluminates in the composition space diagram of the Al(OH)3–tren–HF–ethanol system. Journal of Fluorine Chemistry, 2009, 130, 1099-1105.	1.7	20
82	Total synthesis of a novel macrotetrolide. Tetrahedron, 2008, 64, 11296-11303.	1.9	12
83	Diethylenetriaminium hexafluoridotitanate(IV) fluoride. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m1375-m1375.	0.2	3
84	A new 1D hybrid fluoroaluminate templated by an original tetramine. Polyhedron, 2007, 26, 2493-2497.	2.2	3
85	Hydrogen bonded H3O+, H2O, HF, Fâ^' in fluoride metalates (Al, Cr, Fe, Zr, Ta) templated with tren (tris-(2-aminoethyl)amine). Journal of Fluorine Chemistry, 2007, 128, 404-412.	1.7	19
86	Bis [tris (2-ammonioethyl) amine] bis (pentafluoridooxidomolybdate) difluoride monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1511-m1513.	0.2	5
87	[H4tren]3/2·(Al6F24)·3H2O, the most condensed fluoride in the Al(OH)3-tren-HFaqethanol system. Solid State Sciences, 2007, 9, 531-534.	3.2	14
88	Two-dimensional composition diagram of the Al(OH)3-dien-HFaqethanol system: Evidence of a new tetrahedral (Al4F18)6â^² polyanion. Journal of Fluorine Chemistry, 2006, 127, 1349-1354.	1.7	15
89	On isoelectronic fluorides [H3tren]â‹(AlF6)â‹H2O, [H3tren]â‹(AlF6)â‹HF, [H4tren]â‹(AlF6)â‹(F) and the analogue [H4tren]â‹(FeF6)â‹(F). Solid State Sciences, 2006, 8, 698-703.	iron 3.2	23
90	Diethylenetriaminium hexafluoroaluminate dihydrate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m1178-m1180.	0.2	1

#	Article	IF	CITATION
91	Synthesis and structures of new hybrid fluorides templated by tetraprotonated pentaerythrityl tetramine. Solid State Sciences, 2004, 6, 1229-1235.	3.2	18
92	Ternary and tetrahedral symmetry in hybrid fluorides, fluoride carbonates and carbonates. Journal of Fluorine Chemistry, 2004, 125, 1709-1714.	1.7	8
93	Tris(2-ammonioethyl)aminium decafluorominium monohydrate, (H4tren)[Al2F10]·H2O. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, m1379-m1381.	0.2	3
94	Synthesis, structure determination and magnetic behaviour of the first porous hybrid oxyfluorinated vanado(iii)carboxylate: MIL-71 or Viii2(OH)2F2{O2C-C6H4-CO2}·H2O. Journal of Materials Chemistry, 2003, 13, 2208-2212.	6.7	84