Suse Broyde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4216650/publications.pdf

Version: 2024-02-01

		101543	138484
88	3,945	36	58
papers	citations	h-index	g-index
113	113	113	1411
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mechanism of lesion verification by the human XPD helicase in nucleotide excision repair. Nucleic Acids Research, 2022, 50, 6837-6853.	14.5	6
2	Translesion Synthesis Past 5-Formylcytosine-Mediated DNA–Peptide Cross-Links by hPoll· Is Dependent on the Local DNA Sequence. Biochemistry, 2021, 60, 1797-1807.	2.5	8
3	Impact of DNA sequences on DNA â€~opening' by the Rad4/XPC nucleotide excision repair complex. DNA Repair, 2021, 107, 103194.	2.8	5
4	Molecular dynamics simulations reveal how H3K56 acetylation impacts nucleosome structure to promote DNA exposure for lesion sensing. DNA Repair, 2021, 107, 103201.	2.8	8
5	Light-induced modulation of DNA recognition by the Rad4/XPC damage sensor protein. RSC Chemical Biology, 2021, 2, 523-536.	4.1	3
6	Variable impact of conformationally distinct DNA lesions on nucleosome structure and dynamics: Implications for nucleotide excision repair. DNA Repair, 2020, 87, 102768.	2.8	7
7	Tethering-facilitated DNA â€~opening' and complementary roles of β-hairpin motifs in the Rad4/XPC DNA damage sensor protein. Nucleic Acids Research, 2020, 48, 12348-12364.	14.5	9
8	The DNA damage-sensing NER repair factor XPC-RAD23B does not recognize bulky DNA lesions with a missing nucleotide opposite the lesion. DNA Repair, 2020, 96, 102985.	2.8	5
9	Transcriptional Bypass of DNA–Protein and DNA–Peptide Conjugates by T7 RNA Polymerase. ACS Chemical Biology, 2019, 14, 2564-2575.	3.4	17
10	Structure and mechanism of pyrimidine–pyrimidone (6-4) photoproduct recognition by the Rad4/XPC nucleotide excision repair complex. Nucleic Acids Research, 2019, 47, 6015-6028.	14.5	48
11	5-Formylcytosine-induced DNA–peptide cross-links reduce transcription efficiency, but do not cause transcription errors in human cells. Journal of Biological Chemistry, 2019, 294, 18387-18397.	3.4	16
12	Nucleotide Excision Repair and Impact of Site-Specific $5\hat{a}\in^2$,8-Cyclopurine and Bulky DNA Lesions on the Physical Properties of Nucleosomes. Biochemistry, 2019, 58, 561-574.	2.5	18
13	Rotational and translational positions determine the structural and dynamic impact of a single ribonucleotide incorporated in the nucleosome. DNA Repair, 2019, 73, 155-163.	2.8	15
14	Synergistic effects of H3 and H4 nucleosome tails on structure and dynamics of a lesion-containing DNA: Binding of a displaced lesion partner base to the H3 tail for GG-NER recognition. DNA Repair, 2018, 65, 73-78.	2.8	10
15	Enhanced spontaneous DNA twisting/bending fluctuations unveiled by fluorescence lifetime distributions promote mismatch recognition by the Rad4 nucleotide excision repair complex. Nucleic Acids Research, 2018, 46, 1240-1255.	14.5	23
16	Visualizing Spontaneous DNA Dynamics and its Role in Mismatch Recognition by Damage Recognition Protein Rad4. Biophysical Journal, 2018, 114, 85a.	0.5	3
17	Lesion Sensing during Initial Binding by Yeast XPC/Rad4: Toward Predicting Resistance to Nucleotide Excision Repair. Chemical Research in Toxicology, 2018, 31, 1260-1268.	3.3	20
18	Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair. DNA Repair, 2018, 71, 33-42.	2.8	55

#	Article	IF	CITATIONS
19	5-Formylcytosine mediated DNA–protein cross-links block DNA replication and induce mutations in human cells. Nucleic Acids Research, 2018, 46, 6455-6469.	14.5	39
20	Nucleotide Excision Repair Lesion-Recognition Protein Rad4 Captures a Pre-Flipped Partner Base in a Benzo[<i>a</i>]pyrene-Derived DNA Lesion: How Structure Impacts the Binding Pathway. Chemical Research in Toxicology, 2017, 30, 1344-1354.	3.3	32
21	The Nonbulky DNA Lesions Spiroiminodihydantoin and 5-Guanidinohydantoin Significantly Block Human RNA Polymerase II Elongation <i>in Vitro</i> . Biochemistry, 2017, 56, 3008-3018.	2.5	14
22	Nucleosome Histone Tail Conformation and Dynamics: Impacts of Lysine Acetylation and a Nearby Minor Groove Benzo[<i>a</i>]pyrene-Derived Lesion. Biochemistry, 2017, 56, 1963-1973.	2.5	20
23	Repair-Resistant DNA Lesions. Chemical Research in Toxicology, 2017, 30, 1517-1548.	3.3	48
24	Bypass of DNA-Protein Cross-links Conjugated to the 7-Deazaguanine Position of DNA by Translesion Synthesis Polymerases. Journal of Biological Chemistry, 2016, 291, 23589-23603.	3.4	33
25	Entrapment of a Histone Tail by a DNA Lesion in a Nucleosome Suggests the Lesion Impacts Epigenetic Marking: A Molecular Dynamics Study. Biochemistry, 2016, 55, 239-242.	2.5	10
26	Differences in the Access of Lesions to the Nucleotide Excision Repair Machinery in Nucleosomes. Biochemistry, 2015, 54, 4181-4185.	2.5	15
27	Recognition of Damaged DNA for Nucleotide Excision Repair: A Correlated Motion Mechanism with a Mismatched <i>cis-syn</i> Thymine Dimer Lesion. Biochemistry, 2015, 54, 5263-5267.	2.5	26
28	Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function. PLoS ONE, 2015, 10, e0137124.	2.5	17
29	Structural basis for the recognition of diastereomeric $5\hat{a}\in^2$,8-cyclo- $2\hat{a}\in^2$ -deoxypurine lesions by the human nucleotide excision repair system. Nucleic Acids Research, 2014, 42, 5020-5032.	14.5	69
30	Ribonucleotides as nucleotide excision repair substrates. DNA Repair, 2014, 13, 55-60.	2.8	19
31	Nuclear Magnetic Resonance Studies of an <i>N</i> ² -Guanine Adduct Derived from the Tumorigen Dibenzo[<i>alll</i> <ii>l<i>lllllll<</i></ii>	2.5	8
32	The relationships between XPC binding to conformationally diverse DNA adducts and their excision by the human NER system: Is there a correlation?. DNA Repair, 2014, 19, 55-63.	2.8	33
33	Adenine–DNA Adducts Derived from the Highly Tumorigenic Dibenzo[<i>a</i> , <i>l</i>)]pyrene Are Resistant to Nucleotide Excision Repair while Guanine Adducts Are Not. Chemical Research in Toxicology, 2013, 26, 783-793.	3.3	40
34	Role of Structural and Energetic Factors in Regulating Repair of a Bulky DNA Lesion with Different Opposite Partner Bases. Biochemistry, 2013, 52, 5517-5521.	2.5	15
35	Free Energy Profiles of Base Flipping in Intercalative Polycyclic Aromatic Hydrocarbon-Damaged DNA Duplexes: Energetic and Structural Relationships to Nucleotide Excision Repair Susceptibility. Chemical Research in Toxicology, 2013, 26, 1115-1125.	3.3	18
36	Nucleotide excision repair of 2-acetylaminofluorene- and 2-aminofluorene-(C8)-guanine adducts: molecular dynamics simulations elucidate how lesion structure and base sequence context impact repair efficiencies. Nucleic Acids Research, 2012, 40, 9675-9690.	14.5	61

#	Article	IF	CITATIONS
37	Structural, energetic and dynamic properties of guanine(C8)–thymine(N3) cross-links in DNA provide insights on susceptibility to nucleotide excision repair. Nucleic Acids Research, 2012, 40, 2506-2517.	14.5	29
38	Nucleotide Excision Repair Efficiencies of Bulky Carcinogen–DNA Adducts Are Governed by a Balance between Stabilizing and Destabilizing Interactions. Biochemistry, 2012, 51, 1486-1499.	2.5	46
39	Nuclear Magnetic Resonance Solution Structure of an N2-Guanine DNA Adduct Derived from the Potent Tumorigen Dibenzo[a,l]pyrene: Intercalation from the Minor Groove with Ruptured Watson–Crick Base Pairing. Biochemistry, 2012, 51, 9751-9762.	2.5	12
40	Intercalative Conformations of the 14 <i>R</i> (+)- and 14 <i>S</i> (â^')- <i>trans-anti</i> -DB[<i>a,l</i>]P- <i>N</i> ⁶ -dA Adducts: Molecular Modeling and MD Simulations. Chemical Research in Toxicology, 2011, 24, 522-531.	3.3	28
41	Probing for DNA damage with \hat{l}^2 -hairpins: Similarities in incision efficiencies of bulky DNA adducts by prokaryotic and human nucleotide excision repair systems in vitro. DNA Repair, 2011, 10, 684-696.	2.8	49
42	Resistance of bulky DNA lesions to nucleotide excision repair can result from extensive aromatic lesionâ€"base stacking interactions. Nucleic Acids Research, 2011, 39, 8752-8764.	14.5	62
43	Base Sequence Context Effects on Nucleotide Excision Repair. Journal of Nucleic Acids, 2010, 2010, 1-9.	1.2	33
44	Distant Neighbor Base Sequence Context Effects in Human Nucleotide Excision Repair of a Benzo[a]pyrene-derived DNA Lesion. Journal of Molecular Biology, 2010, 399, 397-409.	4.2	34
45	Visualizing Sequence-Governed Nucleotide Selectivities and Mutagenic Consequences through a Replicative Cycle: Processing of a Bulky Carcinogen <i>N</i> ² -dG Lesion in a Y-Family DNA Polymerase. Biochemistry, 2009, 48, 4677-4690.	2.5	16
46	Differential Nucleotide Excision Repair Susceptibility of Bulky DNA Adducts in Different Sequence Contexts: Hierarchies of Recognition Signals. Journal of Molecular Biology, 2009, 385, 30-44.	4.2	48
47	The Sequence Dependence of Human Nucleotide Excision Repair Efficiencies of Benzo[a]pyrene-derived DNA Lesions: Insights into the Structural Factors that Favor Dual Incisions. Journal of Molecular Biology, 2009, 386, 1193-1203.	4.2	67
48	Transcription of DNA containing the 5-guanidino-4-nitroimidazole lesion by human RNA polymerase II and bacteriophage T7 RNA polymerase. DNA Repair, 2008, 7, 1276-1288.	2.8	15
49	Lesion processing: high-fidelity versus lesion-bypass DNA polymerases. Trends in Biochemical Sciences, 2008, 33, 209-219.	7.5	59
50	DNA Adduct Structure–Function Relationships: Comparing Solution with Polymerase Structures. Chemical Research in Toxicology, 2008, 21, 45-52.	3.3	52
51	Exocyclic amino groups of flanking guanines govern sequence-dependent adduct conformations and local structural distortions for minor groove-aligned benzo[a]pyrenyl-guanine lesions in a GG mutation hotspot context. Nucleic Acids Research, 2007, 35, 1555-1568.	14.5	32
52	Dynamics of a Benzo[a]pyrene-derived Guanine DNA Lesion in TGT and CGC Sequence Contexts: Enhanced Mobility in TGT Explains Conformational Heterogeneity, Flexible Bending, and Greater Susceptibility to Nucleotide Excision Repair. Journal of Molecular Biology, 2007, 374, 292-305.	4.2	46
53	The human DNA repair factor XPC-HR23B distinguishes stereoisomeric benzo[a]pyrenyl-DNA lesions. EMBO Journal, 2007, 26, 2923-2932.	7.8	94
54	Assignment of Absolute Configurations of the Enantiomeric Spiroiminodihydantoin Nucleobases by Experimental and Computational Optical Rotatory Dispersion Methods. Chemical Research in Toxicology, 2006, 19, 908-913.	3.3	33

#	Article	IF	CITATIONS
55	Role of Base Sequence Context in Conformational Equilibria and Nucleotide Excision Repair of Benzo[a]pyrene Diol Epoxideâ°'Adenine Adducts. Biochemistry, 2003, 42, 2339-2354.	2.5	20
56	DNA Adducts from a Tumorigenic Metabolite of Benzo[a]pyrene Block Human RNA Polymerase II Elongation in a Sequence- and Stereochemistry-dependent Manner. Journal of Molecular Biology, 2002, 321, 29-47.	4.2	59
57	Thermodynamic and structural factors in the removal of bulky DNA adducts by the nucleotide excision repair machinery. Biopolymers, 2002, 65, 202-210.	2.4	128
58	Molecular topology of polycyclic aromatic carcinogens determines DNA adduct conformation: a link to tumorigenic activity. Journal of Molecular Biology, 2001, 306, 1059-1080.	4.2	63
59	Stereochemical, Structural, and Thermodynamic Origins of Stability Differences between Stereoisomeric Benzo[a]pyrene Diol Epoxide Deoxyadenosine Adducts in a DNA Mutational Hot Spot Sequence. Journal of the American Chemical Society, 2001, 123, 7054-7066.	13.7	51
60	The Food Mutagen 2-Amino-3,8-dimethylimidazo [4,5-f] quinoxaline: A Conformational Analysis of Its Major DNA Adduct and Comparison with the 2-Amino-3-methylimidazo [4,5-f] quinoline Adduct. Chemical Research in Toxicology, 2001, 14, 476-482.	3.3	8
61	Conformational Determinants of Structures in Stereoisomeric Cis-Opened anti-Benzo[a]pyrene Diol Epoxide Adducts to Adenine in DNA. Chemical Research in Toxicology, 2000, 13, 811-822.	3.3	19
62	Stereochemical Origin of Opposite Orientations in DNA Adducts Derived from Enantiomeric anti-Benzo[a]pyrene Diol Epoxides with Different Tumorigenic Potentials. Biochemistry, 1999, 38, 2956-2968.	2.5	42
63	Solution Structure of the (+)-cis-anti-Benzo[a]pyrene-dA ([BP]dA) Adduct Opposite dT in a DNA Duplexâ€. Biochemistry, 1999, 38, 10831-10842.	2.5	39
64	Origins of Conformational Differences between Cis and Trans DNA Adducts Derived from Enantiomeric anti-Benzo[a]Pyrene Diol Epoxides. Chemical Research in Toxicology, 1999, 12, 597-609.	3.3	31
65	Solution Structure of theN-(Deoxyguanosin-8-yl)-1-aminopyrene ([AP]dG) Adduct Opposite dA in a DNA Duplexâ€. Biochemistry, 1999, 38, 10843-10854.	2.5	29
66	Conformational Analysis of the Major DNA Adduct Derived from the Food Mutagen 2-Amino-3-methylimidazo[4,5-f]quinoline. Chemical Research in Toxicology, 1999, 12, 895-905.	3.3	26
67	Solution Structures of Aminofluorene [AF]-Stacked Conformers of thesyn[AF]â^'C8-dG Adduct Positioned Opposite dC or dA at a Template-Primer Junctionâ€. Biochemistry, 1999, 38, 10855-10870.	2.5	25
68	Solution Structure of the Aminofluorene [AF]-Intercalated Conformer of thesyn-[AF]-C8-dG Adduct Opposite dC in a DNA Duplexâ€. Biochemistry, 1998, 37, 81-94.	2.5	68
69	Solution Structure of the Aminofluorene [AF]-External Conformer of theanti-[AF]-C8-dG Adduct Opposite dC in a DNA Duplexâ€. Biochemistry, 1998, 37, 95-106.	2.5	62
70	Nuclear Magnetic Resonance Solution Structures of Covalent Aromatic Amineâ^'DNA Adducts and Their Mutagenic Relevance. Chemical Research in Toxicology, 1998, 11, 391-407.	3.3	127
71	A Molecular Mechanics and Dynamics Study of the Minor Adduct between DNA and the Carcinogen 2-(Acetylamino)fluorene (dG-N2-AAF). Chemical Research in Toxicology, 1997, 10, 1123-1132.	3. 3	15
72	NMR Solution Structures of Stereoisomeric Covalent Polycyclic Aromatic Carcinogenâ^'DNA Adducts:  Principles, Patterns, and Diversity. Chemical Research in Toxicology, 1997, 10, 111-146.	3.3	331

#	Article	IF	CITATIONS
73	Solution Conformation of the (â^²)-trans-anti-[BP]dG Adduct Opposite a Deletion Site in a DNA Duplex:Â Intercalation of the Covalently Attached Benzo[a]pyrene into the Helix with Base Displacement of the Modified Deoxyguanosine into the Minor Grooveâ€. Biochemistry, 1997, 36, 13780-13790.	2.5	34
74	Solution Conformation of theN-(Deoxyguanosin-8-yl)-1-aminopyrene ([AP]dG) Adduct Opposite dC in a DNA Duplexâ€. Biochemistry, 1996, 35, 12659-12670.	2.5	55
75	Solution Conformation of the (â^')-cis-anti-Benzo[a]pyrenyl-dG Adduct Opposite dC in a DNA Duplex: Intercalation of the Covalently Attached BP Ring into the Helix with Base Displacement of the Modified Deoxyguanosine into the Major Groove. Biochemistry, 1996, 35, 9850-9863.	2.5	85
76	The molecular mechanics program DUPLEX: Computing structures of carcinogen modified DNA by surveying the potential energy surface. Molecular Engineering, 1995, 5, 219-227.	0.2	0
77	Solution Conformation of [AF]dG Opposite a -1 Deletion Site in a DNA Duplex: Intercalation of the Covalently Attached Aminofluorene Ring into the Helix with Base Displacement of the C8-Modified Syn Guanine into the Major Groove. Biochemistry, 1995, 34, 6226-6238.	2.5	35
78	Solution Conformation of the (-)-trans-anti-Benzo[c]phenanthrene-dA ([BPh]dA) Adduct opposite dT in a DNA Duplex: Intercalation of the Covalently Attached Benzo[c]phenanthrenyl Ring to the 3'-Side of the Adduct Site and Comparison with the (+)-trans-anti-[BPh]dA opposite dT Stereoisomer. Biochemistry, 1995, 34, 1295-1307.	2.5	91
79	Solution Conformation of the (+)-cis-anti-[BP]dG Adduct Opposite a Deletion Site in a DNA Duplex: Intercalation of the Covalently Attached Benzo[a]pyrene into the Helix with Base Displacement of the Modified Deoxyguanosine into the Minor Groove. Biochemistry, 1994, 33, 11518-11527.	2.5	50
80	Solution conformation of the (+)-cis-anti-[BP]dG adduct in a DNA duplex: Intercalation of the covalently attached benzo[a]pyrenyl ring into the helix and displacement of the modified deoxyguanosine. Biochemistry, 1993, 32, 4145-4155.	2.5	169
81	Structural characterization of an N-acetyl-2-aminofluorene (AAF) modified DNA oligomer by NMR, energy minimization, and molecular dynamics. Biochemistry, 1993, 32, 2481-2497.	2.5	143
82	Solution conformation of the (+)-trans-anti-[BPh]dA adduct opposite dT in a DNA duplex: Intercalation of the covalently attached benzo[c]phenanthrene to the 5'-side of the adduct site without disruption of the modified base pair. Biochemistry, 1993, 32, 12488-12497.	2.5	87
83	Influence of benzo[a]pyrenediol epoxide chirality on solution conformations of DNA covalent adducts: the (-)-trans-anti-[BP]G.cntdot.C adduct structure and comparison with the (+)-trans-anti[BP]G.cntdot.C enantiomer. Biochemistry, 1992, 31, 5245-5252.	2.5	176
84	Minor-Groove Binding Models for Acetylaminofluorene Modified DNA. Journal of Biomolecular Structure and Dynamics, 1989, 7, 493-513.	3.5	37
85	Prediction of DNA structure from sequence: A build-up technique. Biopolymers, 1989, 28, 1195-1222.	2.4	87
86	An analysis of the structural and energetic properties of deoxyribose by potential energy methods. Journal of Computational Chemistry, 1987, 8, 1199-1224.	3.3	29
87	Energy Minimized Structures of Carcinogen-DNA. Adducts: 2-Acetylaminofluorene and 2-Aminofluorene. Journal of Biomolecular Structure and Dynamics, 1986, 4, 365-372.	3.5	35
88	Carcinogen-base stacking and base-base stacking in dCpdG modified by (+) and (?)anti-BPDE. Biopolymers, 1985, 24, 2279-2299.	2.4	31