
Martin Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4216272/publications.pdf Version: 2024-02-01

MADTIN TUDNED

#	Article	IF	CITATIONS
1	Correction to: ORFLine: a bioinformatic pipeline to prioritize small open reading frames identifies candidate secreted small proteins from lymphocytes. Bioinformatics, 2022, 38, 2673-2673.	4.1	1
2	Polypyrimidine tract binding protein 1 regulates the activation of mouse CD8 T cells. European Journal of Immunology, 2022, 52, 1058-1068.	2.9	5
3	A functional screen of RNA binding proteins identifies genes that promote or limit the accumulation of CD138+ plasma cells. ELife, 2022, 11, .	6.0	5
4	The timing of differentiation and potency of CD8 effector function is set by RNA binding proteins. Nature Communications, 2022, 13, 2274.	12.8	25
5	ORFLine: a bioinformatic pipeline to prioritize small open reading frames identifies candidate secreted small proteins from lymphocytes. Bioinformatics, 2021, 37, 3152-3159.	4.1	7
6	RNA Binding Proteins As Regulators of Oxidative Stress Identified by a Targeted CRISPR-Cas9 Single Guide RNA Library. CRISPR Journal, 2021, 4, 427-437.	2.9	8
7	Essential requirement for polypyrimidine tract binding proteins 1 and 3 in the maturation and maintenance of mature B cells in mice. European Journal of Immunology, 2021, 51, 2266-2273.	2.9	5
8	Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis. Molecular Cell, 2021, 81, 4059-4075.e11.	9.7	42
9	A RAC-GEF network critical for early intestinal tumourigenesis. Nature Communications, 2021, 12, 56.	12.8	11
10	Efficient homing of antibody-secreting cells to the bone marrow requires RNA-binding protein ZFP36L1. Journal of Experimental Medicine, 2021, 218, .	8.5	19
11	The RNA-binding protein HuR is required for maintenance of the germinal centre response. Nature Communications, 2021, 12, 6556.	12.8	10
12	Dynamic Post-Transcriptional Events Governing CD8+ T Cell Homeostasis and Effector Function. Trends in Immunology, 2020, 41, 240-254.	6.8	39
13	Polypyrimidine tract-binding proteins are essential for B cell development. ELife, 2020, 9, .	6.0	25
14	Myeloid Tribbles 1 induces early atherosclerosis via enhanced foam cell expansion. Science Advances, 2019, 5, eaax9183.	10.3	50
15	Alternative Translation Initiation Generates a Functionally Distinct Isoform of the Stress-Activated Protein Kinase MK2. Cell Reports, 2019, 27, 2859-2870.e6.	6.4	22
16	Signalling circuits that direct early B-cell development. Biochemical Journal, 2019, 476, 769-778.	3.7	13
17	RNA-binding proteins in hematopoiesis and hematological malignancy. Blood, 2019, 133, 2365-2373.	1.4	52
18	Membrane Cholesterol Efflux Drives Tumor-Associated Macrophage Reprogramming and Tumor Progression. Cell Metabolism, 2019, 29, 1376-1389.e4.	16.2	261

#	Article	IF	CITATIONS
19	MicroRNA-155 is essential for the optimal proliferation and survival of plasmablast B cells. Life Science Alliance, 2019, 2, e201800244.	2.8	17
20	RNA-binding proteins control gene expression and cell fate in the immune system. Nature Immunology, 2018, 19, 120-129.	14.5	168
21	The RNA-binding protein PTBP1 is necessary for B cell selection in germinal centers. Nature Immunology, 2018, 19, 267-278.	14.5	63
22	The RNA-binding proteins Zfp36l1 and Zfp36l2 act redundantly in myogenesis. Skeletal Muscle, 2018, 8, 37.	4.2	22
23	Initial Identification of a Blood-Based Chromosome Conformation Signature for Aiding in the Diagnosis of Amyotrophic Lateral Sclerosis. EBioMedicine, 2018, 33, 169-184.	6.1	17
24	Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System. Frontiers in Immunology, 2018, 9, 1094.	4.8	60
25	Translational repression of pre-formed cytokine-encoding mRNA prevents chronic activation of memory T cells. Nature Immunology, 2018, 19, 828-837.	14.5	90
26	Antigen phagocytosis by B cells is required for a potent humoral response. EMBO Reports, 2018, 19, .	4.5	44
27	Transcriptome Analysis of Infected and Bystander Type 2 Alveolar Epithelial Cells during Influenza A Virus Infection Reveals <i>In Vivo</i> Wnt Pathway Downregulation. Journal of Virology, 2018, 92, .	3.4	50
28	RNA-binding proteins mind the GAPs. Nature Immunology, 2017, 18, 146-148.	14.5	2
29	Cell cycle <scp>RNA</scp> regulons coordinating early lymphocyte development. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1419.	6.4	11
30	Maintenance of the marginal-zone B cell compartment specifically requires the RNA-binding protein ZFP36L1. Nature Immunology, 2017, 18, 683-693.	14.5	59
31	Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells. Nature Communications, 2017, 8, 530.	12.8	48
32	Characterization of the B Cell Transcriptome Bound by RNA-Binding Proteins with iCLIP. Methods in Molecular Biology, 2017, 1623, 159-179.	0.9	5
33	RNA-binding protein ZFP36L1 maintains posttranscriptional regulation of bile acid metabolism. Journal of Clinical Investigation, 2017, 127, 3741-3754.	8.2	45
34	RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence. Science, 2016, 352, 453-459.	12.6	142
35	The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic β-Selection Checkpoint by Limiting DNA Damage Response Signaling and Cell Cycle Progression. Journal of Immunology, 2016, 197, 2673-2685.	0.8	63
36	The RNA-binding protein TTP is a global post-transcriptional regulator of feedback control in inflammation. Nucleic Acids Research, 2016, 44, gkw474.	14.5	128

#	Article	IF	CITATIONS
37	Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nature Communications, 2016, 7, 10087.	12.8	65
38	GIMAP1 Is Essential for the Survival of Naive and Activated B Cells In Vivo. Journal of Immunology, 2016, 196, 207-216.	0.8	26
39	Deletion of AU-Rich Elements within the Bcl2 3′UTR Reduces Protein Expression and B Cell Survival In Vivo. PLoS ONE, 2015, 10, e0116899.	2.5	11
40	Generation of functionally distinct isoforms of PTBP3 by alternative splicing and translation initiation. Nucleic Acids Research, 2015, 43, 5586-5600.	14.5	37
41	Improving access to medicines: empowering patients in the quest to improve treatment for rare lethal diseases. Journal of Medical Ethics, 2015, 41, 987-989.	1.8	8
42	The RNA-binding protein HuR is essential for the B cell antibody response. Nature Immunology, 2015, 16, 415-425.	14.5	125
43	The Role of p110δ in the Development and Activation of B Lymphocytes. Advances in Experimental Medicine and Biology, 2015, 850, 119-135.	1.6	4
44	RNA binding proteins as regulators of immune cell biology. Clinical and Experimental Immunology, 2015, 183, 37-49.	2.6	50
45	MicroRNA-155 controls affinity-based selection by protecting c-MYC+ B cells from apoptosis. Journal of Clinical Investigation, 2015, 126, 377-388.	8.2	41
46	Generation and Characterisation of Mice Deficient in the Multi-GTPase Domain Containing Protein, GIMAP8. PLoS ONE, 2014, 9, e110294.	2.5	11
47	PI3K Signaling in B Cell and T Cell Biology. Frontiers in Immunology, 2014, 5, 557.	4.8	22
48	Noncoding RNA and its associated proteins as regulatory elements of the immune system. Nature Immunology, 2014, 15, 484-491.	14.5	165
49	The miR-155–PU.1 axis acts on Pax5 to enable efficient terminal B cell differentiation. Journal of Experimental Medicine, 2014, 211, 2183-2198.	8.5	83
50	lnactivation of PI(3)K p110δbreaks regulatory T-cell-mediated immune tolerance to cancer. Nature, 2014, 510, 407-411.	27.8	450
51	The microRNA miR-155 controls CD8+ T cell responses by regulating interferon signaling. Nature Immunology, 2013, 14, 593-602.	14.5	249
52	Pharmacological Inhibition of Glycogen Synthase Kinase 3 Regulates T Cell Development In Vitro. PLoS ONE, 2013, 8, e58501.	2.5	15
53	RNA-binding proteins as a point of convergence of the PI3K and p38 MAPK pathways. Frontiers in Immunology, 2012, 3, 398.	4.8	36
54	Essential Role for Thymosin β4 in Regulating Vascular Smooth Muscle Cell Development and Vessel Wall Stability. Circulation Research, 2012, 111, e89-102.	4.5	54

#	Article	IF	CITATIONS
55	An Emerging Role of RNA-Binding Proteins as Multifunctional Regulators of Lymphocyte Development and Function. Advances in Immunology, 2012, 115, 161-185.	2.2	15
56	A New Mechanism of Gene Regulation Mediated by Noncoding RNA. Journal of Immunology, 2012, 189, 3-4.	0.8	4
57	Pten Loss in CD4 T Cells Enhances Their Helper Function but Does Not Lead to Autoimmunity or Lymphoma. Journal of Immunology, 2012, 188, 5935-5943.	0.8	31
58	Regulation of lymphocyte development and function by RNA-binding proteins. Current Opinion in Immunology, 2012, 24, 160-165.	5.5	18
59	T Cell Receptor Internalization from the Immunological Synapse Is Mediated by TC21 and RhoG GTPase-Dependent Phagocytosis. Immunity, 2011, 35, 208-222.	14.3	152
60	Interaction of Ras with P110Î ³ Is Required for Thymic Î ² -Selection in the Mouse. Journal of Immunology, 2011, 187, 4667-4675.	0.8	9
61	ls Transcription the Dominant Force During Dynamic Changes in Gene Expression?. Advances in Experimental Medicine and Biology, 2011, 780, 1-13.	1.6	12
62	Putative GTPase GIMAP1 is critical for the development of mature B and T lymphocytes. Blood, 2010, 115, 3249-3257.	1.4	48
63	Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nature Immunology, 2010, 11, 717-724.	14.5	187
64	A novel Rac-dependent checkpoint in B cell development controls entry into the splenic white pulp and cell survival. Journal of Experimental Medicine, 2010, 207, 837-853.	8.5	55
65	Phosphoinositide 3-Kinase Activity in T Cells Regulates the Magnitude of the Germinal Center Reaction. Journal of Immunology, 2010, 185, 4042-4052.	0.8	200
66	Thymic development beyond β-selection requires phosphatidylinositol 3-kinase activation by CXCR4. Journal of Experimental Medicine, 2010, 207, 247-261.	8.5	143
67	MicroRNA 125b inhibition of B cell differentiation in germinal centers. International Immunology, 2010, 22, 583-592.	4.0	141
68	The development of mature B lymphocytes requires the combined function of CD19 and the p110δ subunit of PI3K. Self/nonself, 2010, 1, 144-153.	2.0	8
69	Stromal cell-derived factor 1α and CXCR4: newly defined requirements for efficient thymic β-selection. Trends in Immunology, 2010, 31, 370-376.	6.8	26
70	Signaling Pathways in T Follicular Helper Cells. Journal of Immunology, 2010, 184, 6563-6568.	0.8	42
71	A novel Rac-dependent checkpoint in B cell development controls entry into the splenic white pulp and cell survival. Journal of Cell Biology, 2010, 189, i1-i1.	5.2	0
72	Vav GEFs regulate macrophage morphology and adhesion-induced Rac and Rho activation. Experimental Cell Research, 2009, 315, 3345-3358.	2.6	39

#	Article	IF	CITATIONS
73	Detection of protein–protein interactions by ribosome display and protein in situ immobilisation. New Biotechnology, 2009, 26, 277-281.	4.4	4
74	Cutting Edge: The Foxp3 Target miR-155 Contributes to the Development of Regulatory T Cells. Journal of Immunology, 2009, 182, 2578-2582.	0.8	350
75	Rac GTPases play critical roles in early T-cell development. Blood, 2009, 113, 3990-3998.	1.4	64
76	THE ROLE OF PI3K SIGNALLING IN THE B CELL RESPONSE TO ANTIGEN. Advances in Experimental Medicine and Biology, 2009, 633, 43-53.	1.6	16
77	Bâ€cell responses to Bâ€cell activation factor of the TNF family (BAFF) are impaired in the absence of PI3K delta. European Journal of Immunology, 2008, 38, 3543-3548.	2.9	86
78	Detection of transforming growth factor-beta in rheumatoid arthritis synovial tissue: lack of effect on spontaneous cytokine production in joint cell cultures. Clinical and Experimental Immunology, 2008, 81, 278-285.	2.6	83
79	Regulation of B-cell differentiation by microRNAs and RNA-binding proteins. Biochemical Society Transactions, 2008, 36, 1191-1193.	3.4	16
80	Activation of the Small GTPase Rac2 via the B Cell Receptor Regulates B Cell Adhesion and Immunological-Synapse Formation. Immunity, 2008, 28, 88-99.	14.3	148
81	The Effect of Deleting p110l̂´ on the Phenotype and Function of PTEN-Deficient B Cells. Journal of Immunology, 2008, 180, 739-746.	0.8	40
82	Tribbles-2 is a novel regulator of inflammatory activation of monocytes. International Immunology, 2008, 20, 1543-1550.	4.0	53
83	Regulation of B- and T-cell differentiation by a single microRNA. Biochemical Society Transactions, 2008, 36, 531-533.	3.4	65
84	Cutting Edge: The PI3K p110δIs Required for Down-Regulation of RAG Expression in Immature B Cells. Journal of Immunology, 2007, 178, 1981-1985.	0.8	52
85	The 3BP2 Adapter Protein Is Required for Optimal B-Cell Activation and Thymus-Independent Type 2 Humoral Response. Molecular and Cellular Biology, 2007, 27, 3109-3122.	2.3	45
86	Vav family proteins are required for optimal regulation of PLCÎ ³ 2 by integrin αIIbÎ ² 3. Biochemical Journal, 2007, 401, 753-761.	3.7	44
87	The p110delta catalytic isoform of PI3K is a key player in NK-cell development and cytokine secretion. Blood, 2007, 110, 3202-3208.	1.4	83
88	microRNA-155 Regulates the Generation of Immunoglobulin Class-Switched Plasma Cells. Immunity, 2007, 27, 847-859.	14.3	724
89	Requirement of <i>bic/microRNA-155</i> for Normal Immune Function. Science, 2007, 316, 608-611.	12.6	1,786
90	Syk and Slp-76 Mutant Mice Reveal a Cell-Autonomous Hematopoietic Cell Contribution to Vascular Development. Developmental Cell, 2006, 11, 349-361.	7.0	115

#	Article	IF	CITATIONS
91	Phospholipase C- \hat{i}^3 2 is essential for NK cell cytotoxicity and innate immunity to malignant and virally infected cells. Blood, 2006, 107, 994-1002.	1.4	120
92	Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals. BMC Cell Biology, 2006, 7, 10.	3.0	70
93	GβĴ³s and the Ras binding domain of p110Ĵ³ are both important regulators of PI3KĴ³ signalling in neutrophils. Nature Cell Biology, 2006, 8, 1303-1309.	10.3	167
94	Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nature Genetics, 2006, 38, 350-355.	21.4	176
95	Synergistic activation of PKD by the B cell antigen receptor and CD19 requires PI3K, Vav1 and PLCÎ ³ . Cellular Signalling, 2006, 18, 1455-1460.	3.6	13
96	The RNA binding proteinZfp36l1is required for normal vascularisation and post-transcriptionally regulates VEGF expression. Developmental Dynamics, 2006, 235, 3144-3155.	1.8	93
97	A genome-scale assessment of peripheral blood B-cell molecular homeostasis in patients with rheumatoid arthritis. Rheumatology, 2006, 45, 1466-1476.	1.9	38
98	RhoG Regulates the Neutrophil NADPH Oxidase. Journal of Immunology, 2006, 176, 5314-5320.	0.8	37
99	Differential Requirements of PI3K Subunits for BCR or BCR/CD19-Induced ERK Activation. , 2006, 584, 43-52.		2
100	Vav proteins regulate peripheral B-cell survival. Blood, 2005, 106, 2391-2398.	1.4	46
101	The role of endothelial PI3Kγ activity in neutrophil trafficking. Blood, 2005, 106, 150-157.	1.4	169
102	Vav proteins are required for B-lymphocyte responses to LPS. Blood, 2005, 106, 635-640.	1.4	48
103	Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood, 2005, 106, 1432-1440.	1.4	274
104	Phosphatidylinositol 3-kinase is required for the transcriptional activation of cyclin D2 in BCR activated primary mouse B lymphocytes. European Journal of Immunology, 2005, 35, 2748-2761.	2.9	15
105	Role of the p110δPl 3-kinase in integrin and ITAM receptor signalling in platelets. Platelets, 2005, 16, 191-202.	2.3	47
106	Cutting Edge: T Cell Development Requires the Combined Activities of the p110Î ³ and p110δ Catalytic Isoforms of Phosphatidylinositol 3-Kinase. Journal of Immunology, 2005, 175, 2783-2787.	0.8	142
107	Vav1 and Vav2 play different roles in macrophage migration and cytoskeletal organization. Experimental Cell Research, 2005, 310, 303-310.	2.6	40
108	The Role of Endothelial PI3KÎ ³ Activity in Neutrophil Trafficking Blood, 2005, 106, 3891-3891.	1.4	0

#	Article	IF	CITATIONS
109	Differential Regulation of TCR-mediated Gene Transcription by Vav Family Members. Journal of Experimental Medicine, 2004, 199, 429-434.	8.5	35
110	Vav1 and Vav3 Have Critical but Redundant Roles in Mediating Platelet Activation by Collagen. Journal of Biological Chemistry, 2004, 279, 53955-53962.	3.4	91
111	Vav-Dependent and Vav-Independent Phosphatidylinositol 3-Kinase Activation in Murine B Cells Determined by the Nature of the Stimulus. Journal of Immunology, 2004, 173, 3209-3214.	0.8	46
112	Immunological Function in Mice Lacking the Rac-Related GTPase RhoG. Molecular and Cellular Biology, 2004, 24, 719-729.	2.3	62
113	A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas. Nature Genetics, 2004, 36, 894-899.	21.4	157
114	The tyrosine kinase Syk is required for light chain isotype exclusion but dispensable for the negative selection of B cells. European Journal of Immunology, 2004, 34, 1102-1110.	2.9	19
115	PLCγ2 regulates Bcl-2 levels and is required for survival rather than differentiation of marginal zone and follicular B cells. European Journal of Immunology, 2004, 34, 2237-2247.	2.9	27
116	Mechanisms and implications of phosphoinositide 3-kinase δ in promoting neutrophil trafficking into inflamed tissue. Blood, 2004, 103, 3448-3456.	1.4	198
117	BCR activation of PI3K is Vav-independent in murine B cells. Biochemical Society Transactions, 2004, 32, 781-784.	3.4	3
118	The p110δ subunit of phosphoinositide 3-kinase is required for the lipopolysaccharide response of mouse B cells. Biochemical Society Transactions, 2004, 32, 789-791.	3.4	23
119	RhoG regulates gene expression and the actin cytoskeleton in lymphocytes. Oncogene, 2003, 22, 330-342.	5.9	46
120	Regulation of Vav Localization in Membrane Rafts by Adaptor Molecules Grb2 and BLNK. Immunity, 2003, 18, 777-787.	14.3	59
121	A Crucial Role for the p110δSubunit of Phosphatidylinositol 3-Kinase in B Cell Development and Activation. Journal of Experimental Medicine, 2002, 196, 753-763.	8.5	417
122	Vav1, but not Vav2, contributes to platelet aggregation by CRP and thrombin, but neither is required for regulation of phospholipase C. Blood, 2002, 100, 3561-3569.	1.4	48
123	B-cell development and antigen receptor signalling. Biochemical Society Transactions, 2002, 30, 812-815.	3.4	9
124	The tyrosine kinase Lyn is required for B cell development beyond the T1 stage in the spleen: rescue by over-expression of Bcl-2. European Journal of Immunology, 2002, 32, 1029-1034.	2.9	46
125	Natural cytotoxicity uncoupled from the Syk and ZAP-70 intracellular kinases. Nature Immunology, 2002, 3, 288-294.	14.5	105
126	VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nature Reviews Immunology, 2002, 2, 476-486.	22.7	312

#	Article	IF	CITATIONS
127	The Role of Vav Proteins in B Cell Responses. Advances in Experimental Medicine and Biology, 2002, 512, 29-34.	1.6	4
128	Structural Organization of the Mouse Phosphatidylinositol 3-Kinase p110d Gene. Biochemical and Biophysical Research Communications, 2001, 280, 1328-1332.	2.1	5
129	Signal transduction through Vav-2 participates in humoral immune responses and B cell maturation. Nature Immunology, 2001, 2, 542-547.	14.5	169
130	Vav Is Required for Cyclin D2 Induction and Proliferation of Mouse B Lymphocytes Activated via the Antigen Receptor. Journal of Biological Chemistry, 2001, 276, 41040-41048.	3.4	31
131	Functional Dichotomy in Natural Killer Cell Signaling. Journal of Experimental Medicine, 2001, 193, 1413-1424.	8.5	75
132	Tyrosine kinase SYK: essential functions for immunoreceptor signalling. Trends in Immunology, 2000, 21, 148-154.	7.5	376
133	Development of T-leukaemias in CD45 tyrosine phosphatase-deficient mutant lck mice. EMBO Journal, 2000, 19, 4644-4654.	7.8	48
134	Vav-2 controls NFAT-dependent transcription inB- but not T-lymphocytes. EMBO Journal, 2000, 19, 6173-6184.	7.8	73
135	A New Look at Syk in $\hat{I} \pm \hat{I}^2$ and $\hat{I}^3\hat{I}^T$ Cell Development Using Chimeric Mice with a Low Competitive Hematopoietic Environment. Journal of Immunology, 2000, 164, 5140-5145.	0.8	22
136	Genetic and Pharmacological Analyses of Syk Function in IIbβ3 Signaling in Platelets. Blood, 1999, 93, 2645-2652.	1.4	162
137	Tyrosine Phosphorylation of SLP-76 Is Downstream of Syk following Stimulation of the Collagen Receptor in Platelets. Journal of Biological Chemistry, 1999, 274, 5963-5971.	3.4	102
138	The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-ÂB pathways. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3035-3040.	7.1	235
139	Defective immunoglobulin class switching in Vav-deficient mice is attributable to compromised T cell help. European Journal of Immunology, 1999, 29, 477-487.	2.9	48
140	The CD45 tyrosine phosphatase regulates CD3-induced signal transduction and T cell development in recombinase-deficient mice: restoration of pre-TCR function by active p56lck. European Journal of Immunology, 1999, 29, 2376-2384.	2.9	36
141	Greatly reduced efficiency of both positive and negative selection of thymocytes in CD45 tyrosine phosphatase-deficient mice. European Journal of Immunology, 1999, 29, 2923-2933.	2.9	67
142	The CD45 tyrosine phosphatase regulates CD3-induced signal transduction and T cell development in recombinase-deficient mice: restoration of pre-TCR function by active p56lck. European Journal of Immunology, 1999, 29, 2376-2384.	2.9	2
143	Greatly reduced efficiency of both positive and negative selection of thymocytes in CD45 tyrosine phosphatase-deficient mice. European Journal of Immunology, 1999, 29, 2923-2933.	2.9	2
144	Collagen Mediates Changes in Intracellular Calcium in Primary Mouse Megakaryocytes Through syk-Dependent and -Independent Pathways. Blood, 1999, 93, 3847-3855.	1.4	21

#	Article	IF	CITATIONS
145	Genetic and Pharmacological Analyses of Syk Function in llbβ3 Signaling in Platelets. Blood, 1999, 93, 2645-2652.	1.4	16
146	Collagen Mediates Changes in Intracellular Calcium in Primary Mouse Megakaryocytes Through syk-Dependent and -Independent Pathways. Blood, 1999, 93, 3847-3855.	1.4	0
147	Redundant role of the Syk protein tyrosine kinase in mouse NK cell differentiation. Journal of Immunology, 1999, 163, 1769-74.	0.8	30
148	CD19 as a Membrane-Anchored Adaptor Protein of B Lymphocytes: Costimulation of Lipid and Protein Kinases by Recruitment of Vav. Immunity, 1998, 8, 635-645.	14.3	177
149	Syk Tyrosine Kinase Is Required for the Positive Selection of Immature B Cells into the Recirculating B Cell Pool. Journal of Experimental Medicine, 1997, 186, 2013-2021.	8.5	147
150	A Critical Role for Syk in Signal Transduction and Phagocytosis Mediated by Fcγ Receptors on Macrophages. Journal of Experimental Medicine, 1997, 186, 1027-1039.	8.5	471
151	Syk and Fyn Are Required by Mouse Megakaryocytes for the Rise in Intracellular Calcium Induced by a Collagen-related Peptide. Journal of Biological Chemistry, 1997, 272, 27539-27542.	3.4	55
152	A Requirement for the Rho-Family GTP Exchange Factor Vav in Positive and Negative Selection of Thymocytes. Immunity, 1997, 7, 451-460.	14.3	268
153	The Fc receptor γ-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen. EMBO Journal, 1997, 16, 2333-2341.	7.8	416
154	Critical role for the tyrosine kinase Syk in signalling through the high affinity IgE receptor of mast cells. Oncogene, 1996, 13, 2595-605.	5.9	249
155	Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature, 1995, 374, 467-470.	27.8	399
156	Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature, 1995, 378, 298-302.	27.8	706
157	Characterization of ligand binding by the human p55 tumour-necrosis-factor receptor. Involvement of individual cysteine-rich repeats. FEBS Journal, 1994, 223, 831-840.	0.2	13
158	Cytokine Assays: Role in Evaluation of the Pathogenesis of Autoimmunity. Immunological Reviews, 1991, 119, 105-123.	6.0	86
159	Production of Interleukin-1 and Interleukin-6 by Human Keratinocytes and Squamous Cell Carcinoma Cell Lines. Journal of Investigative Dermatology, 1991, 96, 771-776.	0.7	74
160	Induction of the interleukin 1 receptor antagonist protein by transforming growth factorâ€Î². European Journal of Immunology, 1991, 21, 1635-1639.	2.9	181
161	Expression of granulocyteâ€macrophage colonyâ€stimulating factor in rheumatoid arthritis: Regulation by tumor necrosis factorâ€i±. European Journal of Immunology, 1991, 21, 2575-2579.	2.9	288
162	CD4+ T-Cell Clones from Autoimmune Thyroid Tissue Cannot be Classified According to their Lymphokine Production. Scandinavian Journal of Immunology, 1990, 32, 433-440.	2.7	40

#	Article	IF	CITATIONS
163	Detection of interleukin 8 biological activity in synovial fluids from patients with rheumatoid arthritis and production of interleukin 8 mRNA by isolated synovial cells. European Journal of Immunology, 1990, 20, 2141-2144.	2.9	288
164	Cloning of human tumor necrosis factor (TNF) receptor cDNA and expression of recombinant soluble TNF-binding protein Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 7380-7384.	7.1	130
165	Effects of interferon alpha on autocrine growth factor loops in B lymphoproliferative disorders Journal of Experimental Medicine, 1990, 172, 1729-1734.	8.5	73
166	Transforming growth factor Î ² induces the production of interleukin 6 by human peripheral blood mononuclear cells. Cytokine, 1990, 2, 211-216.	3.2	80
167	Granulocyte-macrophage colony stimulating factor induces both HLA-DR expression and cytokine production by human monocytes. Cytokine, 1990, 2, 60-67.	3.2	51
168	Interleukin 7 and interleukin 4 stimulate human thymocyte growth through distinct mechanisms. Cytokine, 1990, 2, 55-59.	3.2	8
169	Interleukin 7 (murine pre-B cell growth factor/lymphopoietin 1) stimulates thymocyte growth: regulation by transforming growth factor beta. European Journal of Immunology, 1989, 19, 783-786.	2.9	66
170	Intrathyroidal cytokine production in thyroid disease. Journal of Autoimmunity, 1989, 2, 171-176.	6.5	12
171	Transforming growth factor beta regulates thyroid growth. Role in the pathogenesis of nontoxic goiter Journal of Clinical Investigation, 1989, 83, 764-770.	8.2	125
172	Intrathyroidal Cytokine Production in Thyroid Disease. , 1989, , 171-176.		1
172 173	Intrathyroidal Cytokine Production in Thyroid Disease. , 1989, , 171-176. Effect of cytokines on HLA-DR and IL-1 production by a monocytic tumour, THP-1. Immunology, 1989, 66, 170-5.	4.4	1
	Effect of cytokines on HLA-DR and IL-1 production by a monocytic tumour, THP-1. Immunology, 1989, 66,	4.4 2.6	
173	Effect of cytokines on HLA-DR and IL-1 production by a monocytic tumour, THP-1. Immunology, 1989, 66, 170-5. Analysis of intrathyroidal cytokine production in thyroid autoimmune disease: thyroid follicular cells produce interleukin-1 alpha and interleukin-6. Clinical and Experimental Immunology, 1989, 77,		18
173 174	Effect of cytokines on HLA-DR and IL-1 production by a monocytic tumour, THP-1. Immunology, 1989, 66, 170-5. Analysis of intrathyroidal cytokine production in thyroid autoimmune disease: thyroid follicular cells produce interleukin-1 alpha and interleukin-6. Clinical and Experimental Immunology, 1989, 77, 324-30. Regulation of expression of human IL-1 alpha and IL-1 beta genes. Journal of Immunology, 1989, 143,	2.6	18 94
173 174 175	 Effect of cytokines on HLA-DR and IL-1 production by a monocytic tumour, THP-1. Immunology, 1989, 66, 170-5. Analysis of intrathyroidal cytokine production in thyroid autoimmune disease: thyroid follicular cells produce interleukin-1 alpha and interleukin-6. Clinical and Experimental Immunology, 1989, 77, 324-30. Regulation of expression of human IL-1 alpha and IL-1 beta genes. Journal of Immunology, 1989, 143, 3556-61. Modulation of cytokine production by transforming growth factor-beta. Journal of Immunology, 	2.6 0.8	18 94 67
173 174 175 176	Effect of cytokines on HLA-DR and IL-1 production by a monocytic tumour, THP-1. Immunology, 1989, 66, 170-5. Analysis of intrathyroidal cytokine production in thyroid autoimmune disease: thyroid follicular cells produce interleukin-1 alpha and interleukin-6. Clinical and Experimental Immunology, 1989, 77, 324-30. Regulation of expression of human IL-1 alpha and IL-1 beta genes. Journal of Immunology, 1989, 143, 3556-61. Modulation of cytokine production by transforming growth factor-beta. Journal of Immunology, 1989, 143, 1989, 142, 4295-300.	2.6 0.8 0.8	18 94 67 260
173 174 175 176 177	 Effect of cytokines on HLA-DR and IL-1 production by a monocytic tumour, THP-1. Immunology, 1989, 66, 170-5. Analysis of intrathyroidal cytokine production in thyroid autoimmune disease: thyroid follicular cells produce interleukin-1 alpha and interleukin-6. Clinical and Experimental Immunology, 1989, 77, 324-30. Regulation of expression of human IL-1 alpha and IL-1 beta genes. Journal of Immunology, 1989, 143, 3556-61. Modulation of cytokine production by transforming growth factor-beta. Journal of Immunology, 1989, 142, 4295-300. Excessive production of interleukin 6/B cell stimulatory factor-2 in rheumatoid arthritis. European Journal of Immunology, 1988, 18, 1797-1802. TUMOUR NECROSIS FACTOR AS AN AUTOCRINE TUMOUR GROWTH FACTOR FOR CHRONIC B-CELL 	2.6 0.8 0.8 2.9	18 94 67 260 790

#	Article	IF	CITATIONS
181	Role of HLA Class II and Cytokine Expression in Rheumatoid Arthritis. Scandinavian Journal of Rheumatology, 1988, 17, 39-46.	1.1	8
182	Interleukin-1 and tumour necrosis factor mRNA expression in rheumatoid arthritis: prolonged production of IL-1 alpha. Clinical and Experimental Immunology, 1988, 73, 449-55.	2.6	279
183	Does the maternal kidney contribute to the increased circulating 1,25-dihydroxyvitamin D concentrations during pregnancy?. Mineral and Electrolyte Metabolism, 1988, 14, 246-52.	1.1	61
184	Effects of tumour necrosis factor and alpha interferon on chronic B cell malignancies. , 1988, 30, 317-9.		1
185	Human T cells from autoimmune and normal individuals can produce tumor necrosis factor. European Journal of Immunology, 1987, 17, 1807-1814.	2.9	94